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Abstract In financial stock markets, dark pools, in which order books or
quotes are not provided, are becoming widely used. However, increasing the
use of dark pools would raise regulatory concerns as it may ultimately af-
fect the quality of the price-discovery function in the lit markets, which are
normal markets in which all order books are provided to investors. This may
destabilize a market and heighten financial systemic risk.

In this study, we investigated effects of a dark pool on financial markets’
efficiency and the price-discovery function by using an artificial market model.
We found that the markets are made more efficient by raising the share of the
trading value amount of the dark pool by a certain level. However, raising the
share above the level makes the market significantly inefficient. This indicates
that the dark pool has an optimal usage rate for market efficiency.

The smart order routing (SOR) is transmitting market orders to the dark
pool, and this leads the depth of limit orders to become thicker. The thicker
limit orders absorb market orders, and thus a market price is still stable near
a fundamental price. On the other hand, when too many waiting orders are
stored in the dark pool, the orders absorb market orders in the lit market by
SOR and prevent the market price converging to the fundamental price. This
causes the market price to stay very different from the fundamental price and
makes the lit market inefficient.

We also discuss mechanisms by which a dark pool makes a market efficient
or inefficient by using a simple equation model. The equations suggest that if
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the trading value amount is higher in dark pools than in lit markets, markets
become inefficient. This suggests that when the usage rate of dark pools is low,
dark pools rarely destroy the price-discovery function even though a large buy-
sell imbalance occurs. On the other hand, when the usage rate of dark pools
is very high, dark pools very easily destroy the price-discovery function by a
very slight buy-sell imbalance. We also compared results of the equations with
those of simulations and found similar tendencies.

1 Introduction

In financial stock markets, dark pools, in which order books or quotes are
not provided, are becoming widely used, especially by institutional investors
[SEC(2010)]. In dark pools, investors can trade a large block of stock with-
out market impacts because investors need not show their orders to anyone
else, and reducing market impacts by such investors may make markets more
efficient [Johnson(2010)].

However, increasing the use of dark pools would raise regulatory concerns
as it may ultimately affect the quality of the price-discovery function in the
lit markets, which are normal markets in which all order books are provided
to investors. This may destabilize a market and heighten financial systemic
risk [EC(2010)], [Ye(2012)]. Therefore, for example in Europe, regulators are
discussing introducing a volume cap regulation for dark pools, specifically a
8% limit for the trading volume for each stock [Bowley(2014)].

Dark pools are very difficult to discuss by only using results of empirical
studies. Because so many factors cause price formation in actual markets, an
empirical study cannot isolate the pure contribution of existing new types of
markets such as dark pools to price formation. Furthermore, empirical studies
cannot investigate situations that have never occurred before in real financial
markets.

We usually discuss whether new types of markets should be spread or not
on the basis of their effects on price formation. An artificial market, which is
a kind of a multi-agent simulation, can isolate the pure contribution of these
new types of markets to the price formation and can treat situations that have
never occurred [LeBaron(2006)], [Chen et al(2012)], [Cristelli(2014)]. These are
strong points of the artificial market simulation study.

Many studies have investigated the effects of several new regulations and
effects of new types of markets by using artificial market simulations, for
example, investigating effects of short selling regulations [Yagi et al(2010)],
transaction taxes [Westerhoff(2008)], financial leverages [Thurner et al(2012)],
circuit breakers [Kobayashi and Hashimoto(2011)], price variations [Yeh and
Yang(2010)], [Mizuta et al(2015a)], tick sizes [Mizuta et al(2013)], speedup
of exchange computer system [Mizuta et al(2015c)], and dark pools [Mo and
Yang(2013)], [Mizuta et al(2015b)].

Indeed, [Mo and Yang(2013)] investigated dark pools by using artificial
market simulations. However, they have not investigated situations that have
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never occurred before such as usage rates of dark pools that are much higher
than those at present because they also use real historical stock prices. [Mizuta
et al(2015b)] investigated whether dark pools reduce market impacts or not
by using artificial market simulations. However, they neither discuss market
efficiency nor markets’ price-discovery function, and their market selection
model was not realistic.

Therefore, in this study, we investigated effects of a dark pool on financial
markets’ efficiency and price-discovery function by using an artificial market
model. This is a very important investigation into financial systemic risk be-
cause making a market inefficient and losing the price-discovery function may
make the market unstable and increase financial systemic risk. In this study, we
additionally implemented smart order routing (SOR) to the model of [Mizuta
et al(2015b)] to treat actual market selection of investors. We discussed quan-
titatively how the spreading of dark pools beyond our experience could affect
the price-discovery function and aimed to clarify the mechanism of dark pools
that makes a market efficient or inefficient.

2 Artificial Market Model

We built a simple artificial market model in which smart order routing (SOR)
was additionally implemented to the model of [Mizuta et al(2015b)], which
had been built on the basis of the model of [Chiarella and Iori(2002)].

The model of [Mizuta et al(2015b)] succeed at replicating high frequency
micro structures such as execution rates, cancel rates, one tick volatility, and
so on, which were not replicated by the model of [Chiarella and Iori(2002)].
Their model [Chiarella and Iori(2002)] was very simple but replicated long-
term statistical characteristics observed in real financial markets: fat-tail and
volatility-clustering.

The simplicity of the model is very important for this study. We explain
the basic concept for building our artificial market model in the Appendix.

2.1 Order Process

The model treats only one risk asset and non-risk asset (cash). The number
of agents is n. First, at time t = 1, agent 1 orders to buy or sell the risk
asset; after that at t = 2, agent 2 orders; at t = 3, 4, , , n, agents 3, 4, , , n order
respectively. At t = n + 1, going back to the first, agent 1 orders, and at
t = n + 2, n + 3, , n + n, agents 2, 3, , , , n order respectively, and this cycle is
repeated. Note that time t passes even if no deals are done.

Agents always order only one share and can short-sell freely. The quantity
of holding positions is not limited, so agents can take any shares for both long
and short positions to infinity.
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2.2 Lit Market and Dark Pool

The model has two markets: one lit market, which provides all order books to
investors, and one dark pool, which provide no order books.

The lit market adopts a continuous double auction to determine a market
price of the risk asset. A continuous double auction is an auction mechanism
where multiple buyers and sellers compete to buy and sell some financial assets
in the market, and where transactions can occur at any time whenever an offer
to buy and an offer to sell match [Friedman(1993)], [TSE(2012)]. The minimum
unit of price change is δP . The buy order price is rounded off to the nearest
fraction, and the sell order price is rounded up to the nearest fraction. When
an agent orders to buy (sell), if there is a lower-price sell order (a higher-price
buy order) than the agent’s order, dealing is immediately done. We call this a
“market order”. If there is not, the agent’s order remains in the order book.
We call this a “limit order”. The remaining order is canceled tc after the order
time.

There are many ways to determine trade prices in dark pools. In the model,
the dark pool adopts an average of the highest buy order price and the lowest
sell order price in the lit market as a trade price. This method is adopted
by many dark pools in real financial markets [Johnson(2010)]. Agents do not
specify an order price in the dark pool. When the agent orders one unit buy
(sell) to the dark pool, trading is done immediately if the dark pool contains
opposite waiting sell (buy) orders. If there are no opposite orders, the order
remains and waits for opposite orders to come in. In the dark pool, therefore,
only either buy or sell orders remain. The same as in a lit market, the remaining
order is canceled tc after the order time.

2.3 Market Selection Model

We investigated two cases: one without and the other with smart order routing
(SOR).

In the case without SOR, the agents order to the dark pool with probability
d and to the lit market with probability 1− d.

In the case with SOR, agents select a market in the following way. When
the order is a market order and opposite limit orders are waiting in the dark
pool, the agents order to the dark pool. When the order is a limit order, or
when the order is a market order and opposite limit orders are not waiting in
the dark pool, the agents order to the dark pool with probability d, the same
as in the case without SOR.

For example, when the agent makes a market buy (sell) order, if limit sell
(buy) orders are waiting in the dark pool, the order is always matched in the
dark pool. If no waiting limit sell (buy) orders are waiting in the dark pool,
the order goes to the dark pool with probability d. Also, when an agent makes
a limit order, the order goes to the dark pool with probability d.
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Of course, investors prefer to make a market order in a dark pool than in
a lit market if there are opposite waiting orders in the dark pool, because a
trade price of a market order in a dark pool is always improved by half of a
bid ask spread1 than that in a lit market.

Indeed in actual financial markets, an investor cannot see whether opposite
limit orders are waiting in dark pools or not. However, it is said that, in the
case of making a market order, at first the investor orders to a dark pool, and
then if the order is not matched, s/he cancels the order soon and orders to a lit
market as a market order. Therefore, this SOR model is not only reasonable
but also essential for a market selection model with a dark pool.

Because [Mizuta et al(2015b)] did not implement such a SOR in their
model, they could not discuss effects of the SOR to market efficiency. An
important contribution of this study is to discuss these SOR effects.

2.4 Agent Model

An agent j determines an order price and buys or sells by the following process.
Agents use a combination of fundamental value and technical rules to form
expectations on a risk asset’s returns. An expected return of the agent j is

rte,j =
1

w1,j + w2,j + uj

(
w1,j log

Pf

P t
+ w2,jr

t
h,j + ujϵ

t
j

)
. (1)

where wi,j is the weight of term i of the agent j and is determined by random
variables uniformly distributed in the interval (0, wi,max) at the start of the
simulation independently for each agent. uj is the weight of the third term of
the agent j and is also determined by random variables uniformly distributed
in the interval (0, umax) at the start of the simulation independently for each
agent. Pf is a fundamental value that is constant. P t is a market price of the
risk asset at time t2. ϵtj is a noise determined by random variables of normal
distribution with an average 0 and a variance σϵ. r

t
h,j is a historical price return

inside an agent’s time interval τj , and rth,j = log (P t/P t−τj ). τj is determined
by random variables uniformly distributed in the interval (1, τmax) at the start
of the simulation independently for each agent.

The first term of Eq. (1) represents a fundamental strategy: an agent ex-
pects a positive return when the market price is lower than the fundamen-
tal value, and vice versa. The second term of Eq. (1) represents a technical
strategy: an agent expects a positive return when historical market return is
positive, and vice versa.

After the expected return has been determined, an expected price is

P t
e,j = P t exp (rte,j). (2)

1 A bid ask spread is defined as the difference between the best bid price (the highest buy
limit order price) and best ask price (the lowest sell limit order price).

2 When the dealing is not done at t, P t remains at the last market price P t−1, and at
t = 1, P t = Pf
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An order price P t
o,j is determined by random variables normally distributed

in an average P t
e,j and a standard deviation Pσ, where Pσ is a constant.

Buy or sell is determined by a magnitude relationship between the expected
price P t

e,j and the order price P t
o,j , i.e.,

When P t
e,j > P t

o,j , the agent orders to buy one share,
When P t

e,j < P t
o,j , the agent orders to sell one share.

3 Simulation Results

[Mizuta et al(2015b)] searched for adequate model parameters verified by
statistically existing stylized facts and market micro structures to investigate
effects of dark pools on market stability. They found parameters to replicate
both long-term statistical characteristics and very short-term micro structures
of real financial markets3. Specifically, we set, n = 1, 000, w1,max = 1, w2,max =
10, umax = 1, τmax = 10, 000, σϵ = 0.06, Pσ = 30, tc = 20, 000, δP = 0.1, Pf =
10, 000. We ran simulations to t = 10, 000, 000.

3.1 Market Efficiency

In this study, we compared several statistical values of simulation runs for
various d = 0, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.25, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9 under not only other parameters that were fixed but also the
same random number table. We simulated these runs 100 times, changing the
random number table each time, and we used averaged statistical values of
100 times runs.

We introduced “market inefficiency” Mie that directly measures market
efficiency,

Mie =
1

te

te∑
t=1

|P t − Pf |
Pf

, (3)

where || means absolute value. Mie is always greater than zero, and Mie = 0
means a market is perfectly efficient. The larger the Mie, the less efficient the
market4.

Fig. 1 shows market inefficiency Mie for various shares of a trading value
amount of the dark pool (D) in the cases with and without SOR (Smart Order
Routing). Note that D is different from the probability of ordering to the dark
pool d. We defined D as D = VD/(VD + VL), where VD is the trading value
amount in the dark pool and VL is the trading value amount in the lit market.

3 We explain the verification of the model in the Appendix.
4 This index is sometimes used in experimental financial studies of people, in which

this market inefficiency is sometimes called “RAD” (Relative Absolute Deviation) [Stöckl
et al(2010)]. Many indications for measuring market efficiency have been proposed [Verhey-
den et al(2013)]. A feature of Mie is that Mie is calculated by using a fundamental price
Pf directly, which is never observed in empirical studies. We can also use Mie in simulation
and experimental studies because we can exactly define a fundamental price.
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Fig. 1 Market inefficiency Mie for various shares of trading value amount of the dark pool
(D).

d is almost the same as the share of numbers of all orders that include limit
and market orders. On the other hand, D counts only market orders.

In the case without SOR, Mie monotonically and gradually decreased with
D as Fig. 1 shows. On the other hand, in the case with SOR, Mie decreased
more sharply in D ≲ 70%, and Mie increased significantly in D ≳ 70%. This
indicates that there is an optimal usage rate of the dark pool for the market
efficiency. Next, we discuss why Mie decreased in D ≲ 70% in section 3.2 and
then why Mie increased significantly in D ≳ 70% in section 3.3.

3.2 Becoming Efficient: lower than optimal usage rate of Dark Pool

Fig. 2 shows execution rates in the lit market for various D in the cases with
and without SOR. In the case without SOR, the execution rates were stable
and moderately decreased. On the other hand, in the case with SOR, the
execution rates more rapidly decreased. This indicates that the SOR reduces
the execution rates in the lit market.

Fig. 3 shows a mechanism for reducing the execution rates in the case with
SOR. As we mentioned in section 2.3, the agents order to the dark pool when
the order is a market order and opposite limit orders are waiting. In other
cases, the agents order to the dark pool with probability d. Therefore, the
number of market orders to the lit market is reduced by the number of market
orders sent to the dark pool by the SOR when opposite limit orders are waiting
in the dark pool. Thus, the execution rates in the lit market with the SOR are
lower than those without the SOR.
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Fig. 2 Execution rates in the lit market for various D.
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Fig. 3 A mechanism for reducing the execution rates in the case with SOR.

This mechanism raises the limit orders relative to market orders in the
lit market. Fig. 4 shows the depth of limit orders and bid ask spreads in the
lit market for various D in the case with SOR. Here, depth of limit orders
is defined as an average number of buy limit orders from (1 − 0.001) × P t(a
market price) to P t per average number of executed trades within one day
(20, 000 time steps), and a bid ask spread is defined as the difference between
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Fig. 5 A mechanism for making the lit market efficient in the case with SOR.

best bid price (the highest buy limit order price) and best ask price (the lowest
sell limit order price) per Pf (a fundamental price). Indeed, by increasing D,
the depth of limit orders becomes thicker, and this leads to narrowing down
the bid ask spread.

Fig. 5 shows a mechanism of how the thicker depth of limit orders makes
the lit market efficient. First, P t is very near Pf . When the depth of limit
orders becomes thicker, even though agents make market orders departing
from Pf , thicker limit orders absorb these market orders, and thus P t is still
stable near Pf .

We summarize why Mie decreased in D ≲ 70% as shown in Figures 3 and
5. Execution rates in the lit market are reduced by more market orders being
sent to the dark pool by the SOR than limit orders increasing D. This leads
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Market Sell Orders 

Market 

Prices 

Prevent to 

Converging 

Stored Waiting Buy 

Orders in Dark Pool 

Fundamental Price 

Fig. 7 A mechanism of how the lit market is made inefficient.

to the depth of limit orders becoming thicker, and these thicker limit orders
absorb market orders. Thus, a market price is still stable near a fundamental
price.

3.3 Becoming Inefficient: Too High usage rate of Dark Pool

We discuss why Mie increased significantly in D ≳ 70%. Fig. 6 shows a number
of waiting limit orders in the dark pool and rte,j (expected return) for all agents
averaged by various P t ranges in the case of D = 44% and 96% with SOR.
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Table 1 Summarized Probabilities for all cases of Orders

lit (1− d) dark pool (d)

buy (a)
market order (k) ak(1− d) ad/2
limit order (1− k) a(1− k)(1− d) ad/2

sell (1− a)
market order (k) (1− a)k(1− d) (1− a)d/2
limit order (1− k) (1− a)(1− k)(1− d) (1− a)d/2

A sign for the number of waiting orders in the dark pool indicates buy or sell
orders: plus means buy orders, and minus means sell orders.

In the case of D = 44%, a few waiting orders are stored in the dark pool
and averaged rte,j are positive when P t is higher than Pf (= 10, 000) and vice

versa5. On the other hand, in the case of D = 96%, many waiting orders are
stored in dark pools and averaged rte,j are the opposite to those in the case of
D = 44%.

Fig. 7 shows how the lit market is made inefficient. When P t becomes
much higher than Pf , many buy waiting orders are stored in the dark pool and
averaged rte,j are negative, which means that agents make market sell orders.
These market sell orders could have led to P t reducing and converging to Pf .
However, many buy waiting orders stored in the dark pool absorb these market
sell orders and prevent P t converging to Pf . Therefore, P

t is maintained at a
much higher price than Pf , and the lit market is made inefficient. When P t

becomes much smaller than Pf , the opposite occurs. This is why Mie increased
significantly in D ≳ 70%.

4 Theoretical Discussion

4.1 Simple Equation Model

In this section, we discuss mechanisms by which a dark pool makes a market
efficient or inefficient by using a simple equation model.

We define a, k, and d as the probabilities of an agent making a buy order,
making a market order in the lit market without SOR, and ordering to the
dark pool the same as in previous sections, respectively. Obviously, 1−a, 1−k
and 1 − d are the probabilities of an agent making a sell order, making a
limit order in the lit market without SOR, and ordering to the lit market is,
respectively.

In the simulation results, few limit orders in the dark pool were canceled.
This means that all limit orders in the dark pool were executed with market
orders and that all numbers of limit orders were the same as all numbers of
market orders in the dark pool. Therefore, we defined probabilities of an agent
making both limit and market orders in the dark pool as 1/2.

5 When there were not enough data in a P t range, we did not plot them in Fig. 6. In the
case of D = 44%, data exist in narrower P t ranges than those in the case D = 96% because
there are no trades outside these P t ranges.
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Table 2 Summarized Probabilities: Summation of buy and sell, a = 1/2

lit (1− d) dark pool (d)
market order (k) k(1− d) d/2
limit order (1− k) (1− k)(1− d) d/2
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Fig. 8 k′ from Eqs.(9) and (10) and the difference between execution rates without and
with SOR of simulation results from Fig. 2 for various D.

These definitions derived that, for example, the probability of an agent
making a market buy order in the lit order is ak(1 − d). Table I summarizes
such probabilities for all cases of orders.

Note that from Table I, we can easily derive a share of the trading value
amount of the dark pool (D)6 as defined in the previous section as

D =
d/2

k(1− d) + d/2
. (4)

In the following subsections, we investigate market efficiency by the simple
equation model from Table I and compare it with simulation results.

4.2 Becoming Efficient: lower than optimal usage rate of Dark Pool

Here, let us discuss an execution rate in the lit market with SOR (k′). For
simplicity, we fixed a = 1/2 and summed the cases with both a buy and a sell
order. Thus, Table I is changed to Table II.

The SOR reduces the probability of market orders to the lit market, k(1−
d). When k(1 − d) > d/2, which means the trading volume in the lit market

6 Note that in our model agents always order one unit. Therefore, D is exactly the same
as the probability of an agent making an market order in the dark pool per the probability
of an agent making an market order in both the dark pool and the lit market.
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Fig. 9 Market inefficiencies (Mie) with SOR and difference between Mie without SOR and
Mie with SOR of simulation results from Fig. 1 for various D.

is greater than that in the dark pool (therefore, this is exactly the same as
D < 1/2), the number of market orders sent to the dark pool by SOR is limited
by the number of limit orders in the dark pool because existing market orders
to the lit market outnumber limit waiting orders in the dark pool. In short,
reduction of market orders to the lit market by SOR depends on the number
of limit orders to the dark pool. Therefore, we can assume the SOR reduces
the probability of market orders to the lit market by αd/2, where α is constant
from zero to 1. Thus, the probability of market orders to the lit market becomes
k(1− d)− αd/2.

On the other hand, when k(1−d) < d/2, the opposite occurs. The number
of market orders sent to the dark pool by SOR is limited by the number of
market orders to the lit market because existing limit orders in the dark pool
outnumber market orders to the lit market. Therefore, we can assume the SOR
reduces the probability of market orders to the lit market by αk(1−d), so the
probability of market orders to the lit market becomes k(1− d)− αk(1− d).

Therefore, when k(1 − d) > d/2 (exactly the same as D < 1/2), by using
Eq.(4), k′ becomes,

k′ = {k(1− d)− αd/2}/(1− d) (5)

=

(
1− α

D

1−D

)
k, (6)

On the other hand, when k(1 − d) < d/2 (exactly the same as D > 1/2), by
using Eq.(4), k′ becomes,

k′ = {k(1− d)− αk(1− d)}/(1− d) (7)

= k(1− α). (8)
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Because these two equations should become exactly the same when k(1−
d) = d/2, we can derive α = 1/3, easily7. Lastly,

k′ =

(
1− 1

3

D

1−D

)
k (When D <

1

2
) (9)

k′ =
2

3
k (When D >

1

2
). (10)

Fig. 8 shows k′ from Eqs.(9) and (10) and the difference between execution
rates without and with SOR of simulation results from Fig. 2 for variousD. We
adjusted zero points of them at D = 0 to make them exactly the same as the
execution rate of simulation results at D = 0. We used the difference between
execution rates without and with SOR because Eqs.(9) and (10) include the
effect only of SOR on reduction of the execution rates and we want to isolate
the pure effect of SOR from simulation results.

k′ from Eqs.(9) and (10) showed that behaviors of k′ are very different
between D < 1/2 and D > 1/2. When D < 1/2, the number of market orders
sent to the dark pool by SOR depends on the number of limit orders in the
dark pool. This means that the more orders made in the dark pool (increasing
D), the more orders sent to the dark pool by SOR. Thus, D increases, and k′

decreases. On the other hand, when D > 1/2, the number of market orders
sent to the dark pool by SOR depends on the number of market orders to
the lit market. This means that increasing D leads to fewer orders to the lit
market and fewer orders sent to the dark pool by SOR. Thus, even though D
increases, k′ never decreases.

This indicates that, whether markets become efficient or inefficient, the
magnitude relationship between the number of market orders to the lit market
and the dark pool is intrinsically important; in short, whether D > 1/2 or
D < 1/2. Therefore, this suggests the optimal usage rate of the dark pool for
the market efficiency is D = 1/2.

The simulation result of k′ (the difference between execution rates without
and with SOR) was similar to that of Eqs.(9) and (10); when D < 1/2, D
increases, k′ decreases, and when D > 1/2, k′ is stable. However, decreasing
shapes are different; Eqs.(9) and (10) draw a convex upward, the simulation
result draws a convex downward, and saturation levels are slightly different.
We consider these differences are derived by a mechanism other than SOR and
are subjects for a future study.

Fig. 9 shows market inefficiencies (Mie) with SOR and the difference be-
tween Mie without SOR and Mie with SOR for simulation results from Fig. 1
for various D. We adjusted the zero point of the difference at D = 0 to make
it exactly the same as Mie with SOR at D = 0. The difference in Mie showed
that when D > 1/2, D increases, Mie increases; this means that SOR could

7 We can interpret α = 1/3 as follows. There are three cases for waiting limit orders in
the dark pool: buy orders waiting, sell orders waiting, and no orders waiting. We assume
the three cases have the same probability of occurring. The market order is sent to the dark
pool by SOR in the only one case of the three cases, i.e., when opposite orders are waiting
in the dark pool. This derives α = 1/3.
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Fig. 10 The boundary of buy-sell order imbalance (a = (1 + D)/(1 + 3D)) at which the
price-discovery function is destroyed or not for various D.

not make the lit market efficient when D > 1/2. This also suggests that a
trading volume in dark pools higher than that in lit markets makes markets
inefficient.

4.3 Becoming Inefficient: Too High usage rate of Dark Pool

In this subsection, we explain how a too high usage rate of the dark pool makes
the lit market significantly inefficient.

We discuss the case in which D is sufficiently higher than 1/2, a large
enough number of waiting buy orders are stored in the dark pool, and the
market price is higher than the fundamental price. In this case, all market sell
orders to the lit market are sent to the dark pool by SOR. Therefore, from
Table I, we can derive that the probability an agent makes a sell order in the
dark pool is (1 − a)d + k(1 − a)(1 − d). Of course, the probability an agent
makes a buy order to the dark pool is ad. If there are more new buy orders to
the dark pool than new sell orders to the dark pool, that is

ad > (1− a)d+ k(1− a)(1− d), (11)

waiting buy orders in the dark pool are not reduced and this prevents a mar-
ket price from converting to the fundamental price. In short, Eq.(11) is the
condition in which the price-discovery function of the lit market is destroyed.

Using Eq.(4), we can simplify Eq.(11) to

a >
1 +D

1 + 3D
. (12)
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Remember that a is the probability of an agent making a buy order. In other
words, a is the ratio of buy orders to all orders, and 1 − a is the ratio of sell
orders to all orders. Thus, a means an imbalance between the numbers of buy
and sell orders, a = 50% means the numbers of buy and sell orders are perfectly
balanced, and a = 100% means no sell orders. Therefore, a = (1+D)/(1+3D)
is the boundary of whether the price-discovery function is destroyed or not.
Note that this discussion is exactly the same in the opposite case of buy and
sell.

Fig. 10 shows a = (1 +D)/(1 + 3D) for various D. The upper side of the
line satisfies Eq.(12). When D = 20%, a = 75%; when more than 75% of all
orders are buy orders, then less than 25% are sell orders and the number of
buy orders is more than three times that of sell orders, so the price-discovery
function is destroyed. When buy orders are more than three times as numerous
as sell orders, we can say that a very large buy-sell imbalance has occurred and
consider this to be a rare case. This suggests that dark pools with D = 20%
rarely destroy the price-discovery function.

On the other hand, when D = 90%, a = 51% (which is a very slight
buy-sell imbalance), and this suggests that dark pools very easily destroy the
price-discovery function.

5 Conclusion and Future Studies

In this study, we investigated how a dark pool, in which no order books are
provided, affects financial markets’ efficiency and price-discovery function by
using the artificial market model. This is a very important investigation into
financial systemic risk because making a market inefficient and losing the price-
discovery function may make the market unstable and increase financial sys-
temic risk. In this study, we additionally implemented a smart order routing
(SOR) to the model of Mizuta et al. [Mizuta et al(2015b)] to treat actual mar-
ket selection of investors. We discussed quantitatively how spreading of dark
pools beyond our experience could affect the price-discovery function. We also
aimed to clarify the mechanism of a dark pool that makes a market efficient
or inefficient.

We found that market inefficiently (Mie) was decreased sharply by raising
the share of the trading value amount of the dark pool (D) in D ≲ 70%. On
the other hand, in D ≳ 70%, Mie increased significantly. This indicates that
there is an optimal usage rate of the dark pool for the market efficiency.

The reason Mie decreased in D ≲ 70% is that the execution rates in the
lit market are reduced by more market orders being sent to the dark pool by
the SOR than limit orders increasing D. This leads the depth of limit orders
to become thicker, these thicker limit orders absorb market orders, and thus
the market price is still stable near the fundamental price (see also Figures 3
and 5).

The reason Mie increased significantly in D ≳ 70% is as follows. When a
market price (P t) becomes much higher than the fundamental price (Pf ), many
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waiting buy orders are stored in the dark pool and averaged estimated returns
(rte,j) for all agents are negative, which means that agents make market sell
orders. These market sell orders could have made P t converge to Pf , but many
waiting buy orders stored in the dark pool absorb these market sell orders and
prevent P t converging to Pf . Therefore, P

t maintains a much higher price
than Pf , and the lit market is made inefficient. When P t becomes much lower
than Pf , the opposite occurs (see also Fig. 7).

We also discussed mechanisms by which a dark pool makes a market effi-
cient or inefficient by a simple equation model. The equations about an execu-
tion rate we derived indicate that whether D > 1/2 or D < 1/2 is intrinsically
important to whether markets become efficient or inefficient. Therefore, this
suggests that the optimal usage rate of the dark pool for the market efficiency
is D = 1/2 and that a trading volume amount in dark pools higher than
that in lit markets makes markets inefficient. We also compared results of the
equations with those of simulations and found similar tendencies.

We also derived an equation showing the boundary of a buy-sell imbalance
at which dark pools destroy the price-discovery function. We also discussed
that when the usage rate of dark pools is low, for example D = 20%, the
equation suggests that dark pools rarely destroy the price-discovery function
even though a large buy-sell imbalance occurs. On the other hand, when the
usage rate of dark pools is very high, for example D = 90%, this equation
suggests that dark pools very easily destroy the price-discovery function by a
very slight buy-sell imbalance.

A future study is to investigate more details of the optimal usage rate of
dark pools for the market efficiency. Our results suggested the optimal usage
rate was around 50%−70%, which is much higher than about 8%, which is the
cap level of dark pools that European regulators are discussing [Bowley(2014)].
However, we could not determine the precise level of the optimal usage rate
of dark pools for the market efficiency.

Another future study is comparing the simulation results with empirical
data. Indeed, we cannot observe Mie of real markets by empirical data because
we cannot find fundamental prices in real markets. On the other hand, we can
observe an execution rate, depth of limit orders and a bid ask spread of each
stock in real lit markets from empirical data. In addition, we can estimate D
of each stock from some statistics. D are different from one stock to another.
Therefore we can draw figures such as Fig. 2 and Fig. 4 from empirical data
plotting each stock having different D, execution rates and so on. To compare
these figures with Fig. 2 and Fig. 4, we can compare the simulation results
with empirical data.

We also observe buy-sell imbalances in real lit markets from empirical data.
Using them and Fig. 10, we can discuss how much D may destroy the price-
discovery function in real financial markets.

An artificial market can isolate the pure contribution of these new types
of markets to the price formation and can treat such markets on a usage rate
higher than we have ever experienced. However, outputs of the artificial mar-
ket simulation study would not be accurate or credible forecasts of the actual
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future. The artificial market simulations need to show possible mechanisms
affecting price formation by many simulation runs and to gain new knowl-
edge and intelligence; conversely, the artificial market simulations are limited
in that their outputs would not certainly but only possibly occur in actual fi-
nancial markets. Therefore, for more detailed discussions, we should compare
the simulation results to results of studies using other methods, e.g. empirical
studies.

Appendix

Basic Concept for Building Model

An artificial market, which is a kind of a multi-agent simulation, can iso-
late the pure contribution of these system changes to the price formation and
can treat the changes that have never been employed [LeBaron(2006)], [Chen
et al(2012)], [Cristelli(2014)]. These are the strong points of the artificial mar-
ket simulation study.

However, outputs of the artificial market simulation study would not be
accurate or credible forecasts of the actual future. The artificial market simula-
tion needs to show possible mechanisms affecting the price formation by many
simulation runs, e.g. searching for parameters, purely comparing before/after
the changing, and so on. The possible mechanisms shown by these simulation
runs will give us new knowledge and intelligence about effects of the changes to
price formation in actual financial markets. Other study methods, e.g. empir-
ical studies, would not show such possible mechanisms. The artificial market
simulation studies also need to gain such new knowledge and intelligence.

Indeed, artificial markets should replicate macro phenomena existing gen-
erally for any asset and any time. Price variation, which is a kind of macro
phenomena, is not explicitly modeled in artificial markets. Only micro pro-
cesses, agents (general investors), and price determination mechanisms (finan-
cial exchanges) are explicitly modeled in artificial markets. Macro phenomena
are emerging as the outcome interactions of micro processes. Therefore, the
simulation outputs should replicate general macro phenomena at least to show
that simulation models are probable in actual markets.

However, it is not a primary purpose for the artificial market to replicate
specific macro phenomena only for a specific asset or a specific period. An
unnecessary replication of macro phenomena leads to models that are over-
fitted and too complex. Such models would prevent our understanding and
discovering mechanisms affecting the price formation because of related factors
increasing.

Indeed, artificial market models that are too complex are often criticized
because they are very difficult to evaluate [Chen et al(2012)]. A too complex
model not only would prevent our understanding mechanisms but also could
output arbitrary results by over-fitting too many parameters. The simpler the
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Table 3 Statistics without Dark Pool

execution rate 32.3%
trading cancel rate 26.1%

number of trades / 1 day 6467
standard for 1 tick 0.0512%
deviations for 1 day (20000 ticks) 0.562%

kurtosis 1.42
lag
1 0.225

autocorrelation 2 0.138
coefficient for 3 0.106
square return 4 0.087

5 0.075

models, the more difficult arbitrary results are to obtain, and the easier the
model is to evaluate.

Therefore, we built an artificial market model that is as simple as possible
and do not intentionally implement agents to cover all the investors who would
exist in actual financial markets.

Verification of the Model

In many previous artificial market studies, the models were verified to see
whether they could explain stylized facts such as a fat-tail, volatility-clustering,
and so on [LeBaron(2006)], [Chen et al(2012)], [Cristelli(2014)]. A fat-tail
means that the kurtosis of price returns is positive. Volatility-clustering means
that the square returns have positive autocorrelation, and the autocorrela-
tion slowly decays as its lag becomes longer. Many empirical studies, e.g.
[Sewell(2006)], have shown that both stylized facts (the fat-tail and volatility-
clustering) exist statistically in almost all financial markets. Conversely, they
also have shown that only the fat-tail and volatility-clustering are stably ob-
served for any asset and in any period because financial markets are generally
unstable.

Indeed, the kurtosis of price returns and the autocorrelation of the square
returns are stably and significantly positive, but the magnitudes of these values
are unstable and very different depending on asset and/or period. The kurtosis
of price returns and the autocorrelation of the square returns were observed
to have very broad magnitudes of about 1 ∼ 100 and about 0.01 ∼ 0.2,
respectively [Sewell(2006)].

For the above reasons, an artificial market model should replicate these
values as significantly positive and within a reasonable range as we mentioned.
It is not essential for the models to replicate specific values of stylized facts
because these stylized facts’ values are unstable in actual financial markets.

Table III lists statistics in which there is only one lit market. All statistics
are averages of 100 simulation runs, and all the following figures use the average
of 100 simulation runs. We define 20, 000 time steps as 1 day because the
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number of trades within 20, 000 time steps is almost the same as that in
actual markets per day. All statistics; execution rates, cancel rates8, standard
deviations of returns for one tick and one day9, kurtosis of price returns,
and the autocorrelation coefficient for square returns10 are of course almost
the same as the results of [Mizuta et al(2015b)] because the models do not
differ except for the market selection model, which has smart order routing
(SOR). [Mizuta et al(2015b)] showed that this mode replicated very short
term micro structure, execution rates, cancel rates, and standard deviations
of returns for one tick and replicated long-term statistical characteristics, fat
tail, and volatility clustering, observed in real financial markets. Therefore, the
model was verified to investigate the effect of dark pools on market stability.
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