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概要

テスト粒子シミュレーションを用いて、有限振幅の電磁流体 (MHD)波動中

での、陽子より重い荷電粒子 (重イオン)の選択的強い加熱を研究した。電子、

陽子、重イオンで構成される３成分プラズマ中では、波動モードの一つは、長

波長において、Alfvén速度より非常に速い位相速度を持つ。この波動と、他の

Alfvén波動と共鳴することにより、重イオンは背景磁場に対して、垂直方向に

強く非等方に加熱される。我々は、３成分プラズマ中での、重イオンの新たな

加熱モデルを提案し、その新しいモデルがテスト粒子シミュレーションと良く

あう事を示す。新しいモデルを検証するため、２つの波の振幅依存性について

調べた。この新しい加熱過程は、電子と陽子のみで構成される２成分プラズマ

の単純な延長では説明出来ないと考えられる。
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Abstract

We discuss preferential, strong heating of heavier charged particles than pro-

tons in large amplitude magnetohydrodynamic (MHD) waves by using test

particle simulations. In a 3 component plasma that consists of electrons, pro-

tons and heavy ions, one of the wave branches has phase velocity larger than

the Alfvén velocity in a long wavelength regime. We find that the resonant in-

teraction between this wave and the other Alfvén wave leads the heavy ions to

strong anisotropic heating in perpendicular direction to an ambient magnetic

field. We propose a new heating model for the heavy ions in the 3 component

plasma, and the new model takes a good agreement with the test particle

simulations. To confirm the new model, we also study the dependence of the

amplitudes of these two waves. We consider that this new heating process is

not explained by a simple extension of the plasma heating process understood

in a 2 component plasma which consists of electrons and protons.
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I. INTORODUCTION

Preferential heating of heaver charged particles than protons is observed in several plasma

circumstances. The observations of the Ultraviolet Coronagraph Spectrometer (UVCS) op-

erating onboard the Solar and Heliospheric Observatory (SOHO) satellite indicate that in

the polar coronal holes the temperature ratio between O5+ and protons is much lager than

their mass ratio1, TO5+/Tp > mO5+/mp, where T is the temperature, m is the mass, respec-

tively. (The subscripts “O5+” and “p” stand for the O5+ and the protons, respectively.) The

observations also indicate that O5+ has a highly anisotropic temperature: the temperature

in the perpendicular direction to the magnetic field is 10 - 100 times hotter than that in the

parallel direction to the magnetic field. This observation imply the existence of preferential

heating processes of heavy ions to the perpendicular direction for the magnetic field. Fast

Auroral SnapshoT (FAST) and Freja satellites observed preferential heating of He+ ions

to the perpendicular direction for the terrestrial magnetic field in the terrestrial auroral

region2,3. This heating occurs in association with electromagnetic ion cyclotron (EMIC)

waves, which implies that the He+ are heated through a cyclotron resonance with the waves.

For these studies, it is very important to understand the wave-particle interaction for the

heavy ions.

Many authors have examined preferential heating of heavy ions. Tanaka4 has performed

numerical simulations and indicated that the heavy ions are preferentially heated in EMIC

waves driven by thermal anisotropic instability of protons. He discovered that the velocities

of most heavy ions direct to the electric field of the excited waves, and the heavy ions are

strongly heated to the perpendicular direction for an ambient magnetic field by experiencing

the electric field of the waves. The quasi linear theory5, assuming that the phase between

particles and waves is random, cannot explain this heating because this heating occurs by

persisting a specific phase relation between the heavy ions velocity and waves. In fact, in

the framework of the quasi linear theory under a weak turbulence, it has been analytically

showed that the heating process of the heavy ions does not have a qualitative difference from
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the heating process of the protons6. These facts indicate that the phase between particles

and waves is quite important information for the strong heating.

Isenberg7 has pointed out that heavy ions can be effectively heated by the second order

Fermi acceleration, because they can interact with EMIC mode in two resonant points while

protons can interact with the EMIC mode in only one resonant point in the solar wind.

Mizuta and Hoshino8 have indicated that there is a very fast EMIC mode in a 3 component

plasma that consists of electrons, protons, and heavy ions, which mode does not exist in

the 2 component plasma that consists of electrons and protons, and this mode plays an

important role for the preferential heating of the heavy ions. Theoretical studies such as

beam instability, parametric instability and so on in the multi component plasma indicate

that several wave modes can be excited, which modes are never excited in the 2 component

plasma9–11. These facts indicate that, what the heavy ions resonate with the waves which

cannot resonate with the protons causes the preferentiality of the heavy ions.

Theses studies implied that properties of wave-particle interaction in the multi compo-

nent plasma are qualitatively different from that in the 2 component plasma, and simply

extension of the theory on the 2 component plasma will not explain the phenomena in the

multi component plasma. For understanding the preferential heating, it is important to ex-

amine the wave-particle interaction of the heavy ions in the multi-component plasma taking

account of the phase relation between the heavy ions and the waves.

In this thesis, we discuss by using test particle simulations that heavy ions are prefer-

entially and strongly heated by the resonant interaction between a high-frequency EMIC

wave and a low-frequency MHD wave if the two waves have almost same Poynting fluxes in

the 3 component plasma. We propose a new wave heating model explaining the preferential

and strong heating of heavy ions, and show that the model is good agreement with the test

particle simulations.

The plan of this thesis is as follows. In Section II, we briefly review the dispersion

relation in the multi component plasma and the pitch-angle scattering in one coherent EMIC

wave. In Section III, we develop test particle simulations and show details of result in the
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case of protons and heavy ions, respectively. In Section IV, we propose a new model for

preferential and strong heating of heavy ions in the multi component plasma. In Section V,

we examine the dependence of the wave amplitudes, and we show that the new model take

good agreement with the test particle simulations.
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II. PARTICLE MOTION IN ONE EMIC WAVE

A. Dispersion relation for the multi-component plasma

We only treat circularly polarized waves propagating along the ambient magnetic field

(B0) in a cold plasma. We assume that the wave frequency (ω) is much smaller than the

electron cyclotron frequency (Ωe). The dispersion relation in the 2 component plasma that

consists of electrons and protons is

ω2

k2
= V 2

A

(
1 − ω

Ωp

)
, (1)

where k is the wave number, VA is the Alfvén velocity and Ωp is the proton cyclotron

frequency. We define the sign of ω and the phase velocity Vph ≡ ω/k as follows: when

a wave is left-hand circularly polarized (right-hand circularly polarized), we take ω > 0

(ω < 0), when the wave having phase velocity parallel (antiparallel) to the ambient field,

we take Vph > 0 ( Vph < 0 ). The top of Figure 1 shows this dispersion relation. The

brunch having ω < 0 is a whistler mode, and that having ω > 0 is an EMIC mode. When

k � Ωp/VA (the reciprocal of the proton inertial length), these two modes degenerate to

the non-dispersive shear Alfvén wave which dispersion relation is given as ω/k = VA. As

k → ∞, the frequency of the EMIC mode asymptotically approaches Ωp, while the whistler

mode extends to the wave brunch having the lager velocity than the Alfvén velocity.

The dispersion relation in the 3 component plasma that consists of electrons, protons

and heavy ions is

(1 − f)Ωp

Ωp − ω
+

Ωhf

Ωh − ω
− k2V 2

A

ωΩp
= 1, (2)

where f ≡ qhnh/(|qe|ne) (q is the charge of the particle, m is the mass, n is the number

density) and the subscript denotes “e”, “p” and “h” denote electrons, protons and heavy

ions, respectively. The bottom of Figure 1 shows this dispersion relation. The EMIC mode

separates two brunches, Lp mode (the brunch approaching ω → Ωp) and Lh mode (the

brunch approaching ω → Ωh). When k � Ωp/VA, Lh mode is nondispersive shear Alfvén
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wave like 2 component plasma. On the other hand, Lp mode has finite frequency (ωco) when

k → 0. This cut-off frequency ωco is,

ωco = fΩp + (1 − f)Ωh. (3)

Lp mode has very faster phase velocity than Alfvén velocity and has very long wavelength

near the cut-off frequency. We call the Lp mode near the cut-off frequency “Super Alfvénic

EMIC wave” (SPA) and call the Lp mode having not so faster phase velocity than Alfvén

velocity and Lh mode “Sub Alfvénic EMIC wave” (SBA). Lh mode is categorized into the

SBA regardless of wave number k. Roughly speaking, Lp mode at k >∼ Ωp/VA is categorized

into the SBA and Lp mode at k → 0 is categorized into the SPA. It is very important that

the SPA never exists in the 2 component plasma. Following sections, we show that there

is a qualitative big difference between the properties of wave-particle interaction in the 2

component plasma and that in the 3 component plasma.

B. Pitch-angle scattering in a EMIC wave

The behavior of a test particle in a monochromatic wave is well studied so far12,13. The

test particles obey the following equations of motion,

dv‖

dt
= ηΩv⊥ sinψ, (4)

dv⊥

dt
= −ηΩ(v‖ − ω

k
) sinψ, (5)

dψ

dt
= −k(v‖ − VR) +

ηΩ

v⊥
(
ω

k
− v‖) cosψ, (6)

where v‖ and v⊥ are the test particle velocity components parallel and perpendicular to the

ambient magnetic field, respectively. Ω is the gyro frequency for the test particle, ψ is the

difference between the phase angle of v⊥ and that of the wave magnetic field (B⊥), and

η ≡ B⊥/B0. VR is the resonant velocity defined as

VR =
ω − Ω

k
. (7)
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From these equations, we obtain the two constants of motion,

(v‖ − ω

k
)2 + v2

⊥ ≡ ε, (8)

1

2
(v‖ − VR)2 − ηv⊥

Ω

k
cosψ ≡ χ. (9)

Eq. (8) means the energy conversation in the wave frame and shows that the particle motions

are constrained to a constant ε circle in (v‖, v⊥) space (Figure 2 a). Eq. (9) shows that the

test particles satisfying the cyclotron resonant condition (v‖ � VR) are orbiting around the “

trapping circle ” which is trapped orbit of χ constants near v‖ � VR and ψ � 0 in the (ψ, v‖)

space while nonresonant particles (v‖ �� VR) move straightly parallel to the ψ axe (Figure 2

b). The resonant particles are pitch-angle scatted because of v‖ oscillation by orbiting the

trapping circle, while the nonresonant particles are not pitch-angle scattered since v‖ of the

particles are not changed. v‖ of resonant particles are changed from v‖ � VR −Vt to VR + Vt

within orbiting around the trapping circle, where resonant width Vt is,

Vt =

√
ηΩv⊥

k
. (10)

The resonant particles are orbiting around the trapping circle with trapping frequency Ωt,

Ωt =
√
ηΩkv⊥. (11)

Due to these two constants, the pitch-angle scattering of resonant particles is constrained to

a ε circle within v‖ = VR − Vt and VR + Vt (Figure 2 c). Resonant particles sense the wave

phases from ψ/π � −0.5 to 0.5 (Figure 2 b), which is corresponding to a half of all phases

(2π). Therefore, the particles sense the wave phases corresponding to a half of wavelength

in the real space (Figure 2 d).

Figure 3 shows the dispersion relation and the resonant lines (ω = kVR + Ω) for protons

and heavy ions in the 3 component plasma. The particles having v‖ = VR resonate with the

waves on the crossing points where the resonant lines intersect the dispersion relation in the

bottom of Figure 1. In the case of protons, particles resonate with two SBAs, which are Lp

and Lh modes. In the case of heavy ions, particles resonate with the SPA (Lp mode) and
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SBA (Lh mode). This fact leads heavy ions to the preferential heating. It is known that if

two waves are counter-streaming with same speed exist, ε is not constant and the particles

approximately move from one ε curve to another curve at random, which leads to the energy

diffusion in the velocity space, the so-called the second order Fermi acceleration14,15. In the

case of protons, two SBAs are counter-streaming and have the about same speed, therefore

resonant protons are understood as the second order Fermi acceleration. In the case of

heavy ions, the SPA and SBA have very different wave speed and wavelength, thus resonant

heavy ions experience a qualitative different acceleration mechanism from the case of the

protons. In this thesis, we discuss that the resonance of the SPA plays an important role on

the preferential heating of the heavy ions.
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III. NUMERICAL STUDY

A. Simulation model

We consider a one-dimensional system with the main axis x. In the system, we suppose

that there exist two waves with which protons (heavy ions) having v‖ = VA resonate. We

choose α particles (Ωh = Ωα = Ωp/2) as heavy ions. Given the two resonant waves, we

integrate in time the Lorentz equation for ions,

m
dv

dt
= q

(
E +

v

c
× B

)
;
dr

dt
= v, (12)

where the electric and the magnetic fields are respectively given by E = (0, Ey, Ez), and

B = (B0, By, Bz), with
 By

Bz


 =

2∑
j=1

B⊥,j


 sin(kjx− ωj + φj)

cos(kjx− ωj + φj)


 (13)

and the transverse electric field is determined from k × E = ωB/c, Faraday’s low, where

c is the speed of light. The following test particle discussion neglects the reaction of the

particles on the waves. At first, we show the standard wave-particle interaction in the two

coherent SBAs for protons. We study next the wave-particle interaction in the coherent

SPA and SBA for heavy ions. The simulation parameters are as follows: we set VR = VA,

then k and ω are determined so as to satisfy the resonant condition, (ω + Ω)/k = VR. To

specify the wave amplitudes, we assume that the two waves have the same Poynting flux.

Faraday’s law, E⊥ = {ω/(ck)}B⊥ = (Vph/c)B⊥ where E⊥ is the wave amplitude of the

electric field, requires the wave amplitudes ηLh and ηLp to satisfy η2
Lh
Vph,Lh = η2

Lp
Vph,Lp. The

simulation parameters are given in Table I. The number of test particles n is 100,000, the

initial velocities of test particles are v‖ � VR = VA and v⊥ ∼ 0, the thermal velosity is

0.02VA to the any direction. The initial positions are randomly distributed in space in order

to have random phases with the wave.

Figure 2 shows the positions of the test particles in velocity space at Ωpt = 100 and

the trajectory of a typical test particle from Ωpt = 0 to 100. In the case of run 1 which
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is the simulation for the protons, the test particles diffuse across the constant ε curves of

the two waves. In the case of run 2 which is the simulation for the heavy ions, however,

the particles are not constrained to constant ε curves. They are efficiently heated in the

perpendicular direction (note that the scale is not the same). This kind of particle motion

cannot be explained in a conventional pitch angle diffusion model in a 2 component plasma.

In the next subsections, we discuss more detail.

B. Result for protons

In this subsection, we discuss the result of run 1. Figure 4 (a) shows time evolution of

v⊥ distribution for all test particles. The horizontal axis is time normalized by Ω−1
p , the

vertical axis is v⊥ normalized by VA and color counter is the particle number density with

a logarithm scale. As time goes on, particles are slowly diffused, and are heated up to

V ⊥ ∼ 3VA in 100Ωp. Figure 4 (b) shows time evolution of pitch-angle (the angle between

the ambient field and particle velocity). We define the sign of the pitch-angle is positive

when v‖ > 0 and is negative when v‖ < 0. The particles are quickly pitch-angle scattered.

No particle have negative pitch angle because an initial v‖ is +VR and the particles are not

strongly scattered to v‖ < 0. One can fined a cyclic dense curve in Figure 4 (a) and (b).

It means that some particles constrained to energy constant ε curves in one wave frame.

There are also a dense lines extended to high v⊥ in Figure 4 (a), they are regarded as lucky

particles in the sense that they are successively accelerated by resonating with two waves.

Figure 4 (c) shows time evolution of the phase angle (ψ) between v⊥ and B⊥ of the wave

1. The particles experience various phases. We turn the detail explanation to the next

section, here we give a brief explanation with Figure 4 (d). A particle resonating with wave

1 (dense curve) senses the wave phases corresponding to a half of the wavelength of the wave

1 ( λ1), and the particle also experience various phases of the wave 2 (light curve) because

waves 1 and 2 have similar wavelength, λ1 � λ2. Therefore, particles experience various

phases for both waves, and this fact leads that one can regard the particle motions to be

9



stochastic.

C. Result for heavy ions

In this subsection, we discuss a result of run 2. Figure 5 (a) shows time evolution of

v⊥ distribution same as Figure 4 and theoretical result8 (dashed line), v⊥ = ηSPAVph, SPAΩt.

The theory agrees very well with the simulation. The next section, we discuss the detail

about the theory. Particles are “strongly” heated, which means that 〈v⊥〉 (the average of

v⊥ for all particles) linearly increases very faster than that in the case of run 1 (note that

the scale of v⊥ of Figure 5 (a) is bigger than that of Figure 4 (a)) and the variance of

v⊥, (1/n)
∑

j(v⊥,j − 〈v⊥〉)2 increase very slower than 〈v⊥〉, where a subscript “j” denotes

each particle. Figure 5 (b) shows time evolution of the pitch angle. The particles are

quickly accelerated towards the perpendicular direction, and the particles are not pitch-

angle scattered.

Figure 5 (c) shows time evolution for ψSPA, an angle between v⊥ and B⊥ of the SPA.

Particles are very quickly “bunched” near ψSPA/π � 0.5. The phase behavior is described

by different terms, “phase trapping” and “phase bunching”. “Phase trapping” means a

bounded phase oscillation of an individual resonant particle. On the other hand, “phase

bunching” describes a state in which phases of many resonant particles are bunched around

a certain wave phase12. The time scale of the bunching is about Ω−1
p . ψSPA/π � 0.5 is

the parallel to E⊥ of the SPA. Therefore, during the interaction most particles are always

resonating with the SPA electric field and the particles are strongly heated to the direction to

the electric field of the SPA, which is the perpendicular direction to the ambient magnetic

field. On the other hand, other few particles are deaccelerated from Ωpt � 60 (also see

Figure 5 c), which are trapped only by the SPA and do not resonate with SBA. We turn

the detail explanation to the next section, here we give a brief explanation with Figure 5

(d). A particle trapped by the SBA senses the wave phases corresponding to a half of the

wavelength of the SBA, and the particle experiences a specific phase for the SPA (light curve)

10



because the SPA have very long wavelength than that of the SBA, λSPA 
 λSBA. During the

trapping by short wave SBA, particles are bunched to the direction to the electric field of

long wave SPA. Therefore the particles are strongly heated by experiencing the SPA electric

field. This heating cannot be explained as the second ordered Fermi acceleration because of

the specific phase bunching. The next section, we propose new heating model and obtain

good agreement with the simulation result.
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IV. THEORY

A. Explanation by ε and χ

In the case of run 1, two SBAs have about the same resonant width Vt. The top of

Figure 6 is an illustration of typical particle motion in the velocity space, and the bottom

of Figure 6 is that in (ψ, v‖) space. We draw constant ε and Vt curves for two waves in the

top of Figure 6, and the constant χ curves in Figure 6 (b). The particle are stochastically

trapped by one of two waves, therefore the particles are sometimes trapped by one of two

waves and sometimes trapped by another wave. Some particles are successively accelerated

by resonating with two waves and some particles are decelerated by the two waves. Since

fate of particles, accelerated or decelerated, is a matter of probability, the behavior of the

particles becomes diffusive.

In the case of run 2, two waves have very different Vt, the SPA have larger Vt than that

of the SBA. The top of Figure 7 is an illustration of typical particle motion in the velocity

space, and the bottom of Figure 7 is that in (ψ, v‖) space. The particles trapped by the SBA

cannot orbit around the SPA trapping circle because v‖ of the particles are bounded within

small variation by the χ constant curves of the SBA. Since the particles cannot orbit around

the SPA trapping circle, thus ψSPA is not changed (Figure 7 bottom). The resonant particles

are accelerated to the parallel direction only by B⊥ because the force of wave electric field E⊥

has the perpendicular direction. Because particles are trapped by a wave B⊥ varying v‖ to

orbit around the trapping circle, the particles are trapped by the wave having stronger B⊥.

In the case of run 1, since B⊥ of two waves are about same, particles sometimes orbit around

the trapping circle of one wave and sometimes orbit around that of another wave. On the

other hand, in the case of run 2, B⊥,SBA is very greater than B⊥,SPA. (Note that the SBA and

SPA have same Poynting flux, Vph,SPAη
2
SPA = Vph,SBAη

2
SBA, and Vph,SPA 
 Vph,SBA.) Therefore,

most particles are orbiting around the trapping circle of the SBA. An important point is

that SPA has larger trapping circle (Vt,SPA > Vt,SBA) though particles are trapped by the SBA

12



because the SBA has stronger magnetic field than that of the SPA (B⊥,SBA > B⊥,SPA). From

the above discussions, we can get the conditions of the occurrence to the “strong” heating

such as the case of run 2,

B⊥,SPA < B⊥,SBA (14)

λSPAB⊥,SPA > λSBAB⊥,SBA (15)

We examin Eqs. (14) and (15) by simulations in various parameters in Section V.

B. Purely electric and magnetic waves theory

In this subsection, we discuss about strong heating more quantitatively. In the case of

run 2, the simulation for heavy ions, the SPA has a larger electric field and weaker magnetic

field than the SBA since,

E⊥,SBA

E⊥,SPA

=
ηSBAVph,SBA

ηSPAVph,SPA

� 2, (16)

B⊥,SBA

B⊥,SPA
=
ηSPA

ηSBA

� 0.2. (17)

To simplify the discussion, we treat a model in which the SPA is taken as purely electric,

while the SBA is assumed purely magnetic. We therefore neglect the magnetic field in the

SPA and the electric field in the SBA. In other words, we treat “the purely electric wave”

which brings only the electric field and “the purely magnetic wave” which has only the

magnetic field. (These situations may be realized in the cut-off frequency with k = 0 and

the resonance frequency with k → ∞, respectively.) For propagation along the ambient

magnetic field, the test particles obey the following equations of motion:
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dv‖

dt
= ΩηBv⊥ sinψB, (18)

dv⊥

dt
= Ω(ηEc cosψE − ηBv‖ sinψB), (19)

dψB

dt
= −kB(v‖ − VR)

− Ω

v⊥
(ηEc sinψE + ηBv‖ cosψB), (20)

dψE

dt
= −kE(v‖ − VR)

− Ω

v⊥
(ηEc sinψE + ηBv‖ cosψB), (21)

where ηE = E⊥/B0, ηB = B⊥/B0 (subscript “E” stands for the purely electric field and “B”

describes the purely magnetic wave.)

Let us consider the case that only purely electric wave exists. Substituting ηB = 0 in

Eqs.(18)-(21), these equations become

dv‖

dt
= 0, (22)

dv⊥

dt
= AE cosψE, (23)

dψE

dt
= −k(v‖ − VR,E) − AE

v⊥
sinψE, (24)

where we define a theoretical heating ratio, AE ≡ ηEΩc. Eq.(22) indicates v‖ is a constant

of time. We are interested in the behavior of resonant particles (v‖ = VR). Eq.(24) becomes

dψE

dt
= −AE

v⊥
sinψE, (25)

showing that ψE decreases for ψE > 0 (−π < ψE < π), while ψE increases for ψE < 0. When

ψE � 0, v⊥ increases from Eq.(23) and ψ̇E → 0 from Eq.(24). Therefore, ψE for resonant

particles is approaching zero, reaching the stable equilibrium at ψE = 0. Resonant particles

are quickly bunched to ψE = 0. The time scale of the particle to be bunched to ψE = 0 is

TE =
v⊥

AE

. (26)

In the case of run 2, TE is given by

TE � v⊥

ηSPAΩVph,SPA

� Ω−1
p , (27)

14



where we use that because of Faraday’s law ηEc corresponds to ηSPAVph,SPA, and v⊥ = 0.1VA

as a typical initial value. This indicates that the particles are immediately bunched at

ψE = 0. Substituting ψE = 0 in Eq.(23) we have v⊥ = AEt, with v⊥ = 0 initially. The

resonant particle velocity increases linearly with the constant heating rate, AE .

Next, let us consider the case that only purely magnetic wave exists. By substituting

ηE = 0 in Eqs.(18)-(21), we obtain the constants of motion,

v2
‖ + v2

⊥ = ε (28)

1

2
(v‖ − VR)2 − ηBΩv⊥ cosψB

kB

≡ χ. (29)

The purely magnetic wave has the same properties as the monochromatic wave. The resonant

particles are trapped by the purely magnetic wave and are pitch-angle scattered. Because

ψB = 0 of the center of the trapping circle, ψB oscillates near ψB � 0.

Now, we discuss the case that both the purely electric wave and the purely magnetic

wave coexist. We assume that v‖ is close to resonant velocity VR. From the previous

discussion, ψE becomes zero quickly and ψB oscillates near ψB � 0. We discuss the particle

motions having ψE = 0 and ψB � 1 after the initial time evolution. Furthermore, we

assume ηEc 
 ηBv‖ψB because ηSPAVph,SPA > ηSBAVR in the case of run 2 (ηEc corresponds

to ηSPAVph,SPA, ηSBAVR ∼ ηBv‖ and ψB � 1). We therefore neglect the second term of the

right hand side in Eq.(19). We assume the particles have a large v⊥/v‖. Thus we can drop

the last term of the right hand side in Eq.(21). In this approximation we finally get

v‖ = Vt,BψB0 sin(ωt,Bt) + VR, (30)

v⊥ = AEt, (31)

ψB = ψB0 cos(ωt,Bt), (32)

where Vt,B is the trapping velocity for the purely magnetic wave, Vt,B ≡
√
ηBΩv⊥/kB, ωt,B is

the trapping frequency for that, ωt,B ≡ √
ηBΩv⊥kB and ψB0 is the initial value of ψB. These

equations show that v‖ and ψB are determined by the purely magnetic wave and a simple

harmonic oscillator while v⊥ is described by the purely electric wave alone and increases

15



linearly AE . We have showed that (31) agree with the numerical result in the case of run 2

in Section III.
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V. DEPENDENCE OF WAVE AMPLITUDES

A. Dependence of wave amplitudes for heavy ions

In this section, we perform simulations in various parameters of two waves in the case of

run 2 (for heavy ions). In the previous sections, we assume that two waves have the same

Poynting fluxe (Pf). Here, we study the dependence of the ratio of Poynting flux of two

waves, Pf SPA/Pf SBA, and investigate the effect of the resonant velocity VR. When VR is

changed, we must take different k and ω of two resonant waves (Figure 1 bottom). Thus

the ratio of phase velocity, Vph,SPA/Vph,SBA is also modified.

To decide whether strong heating occurs or does not for each simulation, we fit a numer-

ical result on an equation,

〈v⊥〉 = ctα, (33)

where the bracket “〈〉” means an average for all particles. When the particles are strongly

heated, one obtains α = 1 from Eq.(31). On the other hand, when particles are only

pitch-angle scattered, one obtains α = 0 because pitch-angle scattering does not diffuse the

particle energy (Eq.8). The top of Figure 8 shows an index α as the function of Pf SPA/Pf SBA

and Vph,SPA/Vph,SBA. The horizontal and vertical axes are Pf SPA/Pf SBA and Vph,SPA/Vph,SBA,

respectively. We execute simulations from tΩp = 0 to 1000. We have confirmed that if the

ratio of Poynting flux of two waves is same, the absolute value of Pounting flux does not

affect the index α. The top of Figure 8 indicates that when the Poynting flux of two waves

are same, the particles are strongly heated. When one of waves is weak, on the other hand,

the particles are not heated, and then the particles are pitch-angle scattered by the wave

having lager Poynting flux. The occurrence of the strong heating needs both of the SPA

and SBA and the particles are not strongly heated even if which wave is missing. In the top

of Figure 8, white hatched area is satisfied Eqs. (14) and (15), which agree very well with

the numerical result. Therefore, we consider that Eqs. (14) and (15) are the necessary and

sufficient conditions for the strong heating.
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The bottom of Figure 8 shows a index c/AE, where c means numerical heating ratio

given by Eq. (33) only when α � 1 and AE is theoretical hating ratio given by Eq. (31),

respectively. In order to avoid misleading, we only plot c/AE satisfying α > 0.9 (the strong

heating area) because c does not mean heating ratio when α �� 1, for example c means

a constant velocity, 〈v⊥〉 = c when α = 0. In the left part (Pf SPA/Pf SBA < 1) of the

strong heating area, on finds c/AE � 1 which means that theoretical result AE agrees with

numerical result c. On the other hand, one finds c/AE < 1 in the right part of the strong

heating area because some particles are strongly heated and others are only pitch-angle

scattered. We discuss about this phenomenon in the following subsection.

B. Case of weak SPA

In this subsection, we discuss the case of λSPAB⊥,SPA � λSBAB⊥,SBA, which is one of

the critical parameter whether Eq.(15) is satisfied or not. In this case, the SPA has smaller

Poynting flux than that of the SBA, that is to say, the SPA is weaker than the SBA. In the top

of Figure 8, a white dashed curve on the left side is satisfied with λSPAB⊥,SPA = λSBAB⊥,SBA.

Here, we take Vph,SPA/Vph,SBA = 21.7 and Pf SPA/Pf SBA = 0.098 (black circle in the top of

Figure 8). The top of Figure 9 shows time evolution of v⊥ from tΩ = 0 to 1000, and the

white dashed line is the theoretical heating ratio (Eq.31). Before tΩ � 200, particles are

heated same as theory, but the after, the particles are not strongly heated. The bottom

of Figure 9 is an illustration of a typical particle motion in (ψ, v‖) space. In this case, the

resonant width of the SPA, Vt,SPA is same as Vt,SBA. At first, the particles are trapped by the

SBA and phases for the SPA are bunched at E⊥,SPA, thus the particles are strongly heated.

However, the phase bunching for the SPA is gradually broken because by orbiting around

the trapping circle of the SBA the particles can easily obtain v‖ enough to orbit around the

trapping circle of the SPA (note Vt,SBA � Vt,SPA). The SPA is not strong enough to bunch the

particles at the direction of the electric field of the SPA. Therefore, the particles gradually

drop out of the strong heating process.
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C. Case of strong SPA

We discuss the case of B⊥,SPA � B⊥,SBA, which is another critical parameter whether

Eq.(14) is satisfied or not. In this case, the SPA has bigger Poynting flux than that of the

SBA, that is to say, the SPA is stronger than the SBA. In the top of Figure 8, a white dashed

line on the right side is satisfied with B⊥,SPA � B⊥,SBA. Here, we take Vph,SPA/Vph,SBA = 21.7

(same as previous subsection) and Pf SPA/Pf SBA = 20.5 (black square in the top of Figure

8). The top of Figure 10 shows time evolution of v⊥ from tΩ = 0 to 1000. Most particles

are pitch-angle scattered and energy diffused slowly. The frequency of these pitch-angle

scattering indicates that the particles resonate with the SPA. However, some particles are

strongly heated and their heating ratio agrees with the theoretical heating ratio (not shown).

Some particles begin to be strongly heated, and once the heating begins, the particles never

drop out of the strong heating process. The bottom of Figure 10 is an illustration of a typical

particle motion in (ψ, v‖) space. In this case, some particles orbit around the trapping circle

of the SPA because the magnetic field of the SPA is strong as same as that of the SBA,

and particles moves neglecting χ counters for the SBA. Therefore, they are pitch-angle

scatted by the SPA. However, some particles are sometimes trapped by the SBA, and begin

to be phase-bunched near E⊥,SPA. Such particles never orbit around the trapping circle of

the SPA again because the particles trapped by the SBA cannot obtain v‖ enough (note

Vt,SPA 
 Vt,SBA). Therefore, the selected particles are strongly heated all the time after the

selection. Let us see the top of Figure 10 again, most particles begin to be strongly heated

at v⊥ � 0. The time scale of the particle to be bunched at ψSPA = 0 is given by Eq.(26).

When v⊥ is small, particles are rapidly bunched at ψSPA = 0 and easily begin to be strongly

heating. Therefore, particles are selected every trapping frequency of the SPA and make

lines at equal intervals in the top of Figure 10.
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D. Dependence of wave amplitudes for protons

We also perform simulations in various parameters of two waves in the case of run 1

(for protons). The top of Figure 11 shows the index α in the same format as Figure 8.

The strong heating area is very narrower than that in the case of heavy ions. The bottom

of Figure 11 shows the index c/AE in the case of protons. Protons are strongly heated

only when the wave parameters are very specific. Note that the scale of vertical axe is not

same as Figure 8 because the protons cannot resonate with two wave having very different

wavelength (Figure 1 bottom). Therefore, very specific wave parameters are satisfied with

Eqs. (14) and (15). We consider that the strong heating occurs not only for the heavy ions

but also for the protons. The conditions Eqs.(14),(15) are satisfied for protons only when

waves have the specific amplitudes because the protons cannot resonate with two waves

having very different wavelength while these conditions can be easily satisfied for the heavy

ions in the 3 component plasma because the SPA having very long wavelength exists.

E. Dependence of wave amplitudes in the 2 component plasma

We also perform simulations in various paramerters for protons in the 2 component

plasma. In the 2 component plasma, there are whistler and EMIC modes (Figure 1 top).

We account the index α in various parameters in the coherent whistler and EMIC waves

resonating with the protons. Figure 12 shows the index α in the same format as Figure 8

except the vertical axe is VR. This result shows that the protons are strongly heated even

in the 2 component plasma when two waves have specific parameters. The top of Figure 13

shows v⊥ at PfEMIC/PfWhistler = 0.26 and VR = 3 (black circle in Figure 12). Some particles

are strongly heated and others are pitch-angle scattered, it is similar to the case of the strong

SPA in the previous subsection. In this case, it is different from the case of the SPA and SBA

that the EMIC has longer wavelength and weaker electric field (slower phase velocity) than

the whistler wave while the SPA has longer wavelength and stronger electric field than that
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of the SBA. The heating ratio obtained by numerical result for selected particles agrees with

theoretical heating ratio obtained by whistler electric field, and the strength of EMIC electric

field is too weak to explain the numerical heating ratio. However, the selected particles not

may be bunched to the direction of the whistler electric field (Figure 13 bottom, the direction

of wave electric field is ψ,Whistler/π = 0.5), and the particles are buched at ψ,Whistler/π � 0.2.

It may not be easy to explain the reason.
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VI. SUMMARY AND DISSCUSION

We have discussed a new heating process of heavy ions in two coherent EMIC waves

having different wavelength each other by using the test particle simulations, and we have

proposed the new models which agree with simulations. We have found that particles are

strongly heated in the two coherent circularly polarized waves which are satisfied

B⊥,1 < B⊥,2, (34)

λ1B⊥,1 > λ2B⊥,2, (35)

and the heating ratio for the perpendicular direction to the ambient magnetic field, AE is

AE =
B⊥,1

B0

ω1

k1

Ω, (36)

where subscript “1” and “2” describe one of two coherent waves and wave 1 is longer than

wave 2 (k1 < k2). The above conditions can be easily satisfied for the heavy ions in the 3

component plasma, because the cut-off EMIC wave which has very long wavelength exists.

On the other hand, it is difficult that the above conditions are be satisfied for protons, be-

cause the protons cannot resonate with the two waves which have very different wavelength.

Therefore, heavy ions are strongly heated within various wave parameters while protons are

heated within specific parameters. The dispersion relation in the 3 component plasma leads

to such preferential heating of heavy ions.

We assumed for simplicity two coherent waves model, but we expect that heavy ions are

strongly heated in one coherent long wave and weak turbulence, and if that is right, the

model proposed by this thesis will take more applications to heliospheric and astronomical

phenomena. Now, we are analyzing about this issue. We did not discuss how a coherent long

EMIC wave is excited. One of the possible processes is an anisotropic thermal α particle

beam instability10. Other possible process is a parametric instability in the multi component

plasma9. The excitation mechanisms of this mode should be studied further. We are also

planning to study the self-consistent interaction between waves and particles using a hybrid

simulation.
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We have only begun to investigate the potentially rich particle heating process in the

multi-component plasma. It is important to study our theoretical model from other aspects

such as the stochastic/chaotic heating process etc.16,17. This issue will be reported elsewhere.

We expect that this theory can be applied to many heliospheric and astronomical phe-

nomena. In future publications, we hope to show that observed preferential heating agrees

with new heating model proposed in this thesis.
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TABLES

TABLE I. Parameters for the test particle simulations

run particles wave 1 wave 2

1 protons SBA(B⊥/B0 = 0.075, Vph/VA � −1.2) SBA (B⊥/B0 = 0.1, Vph/VA � −0.68)

2 heavy ions (α) SPA (B⊥/B0 = 0.022, Vph/VA � 18) SBA (B⊥/B0 = 0.1, Vph/VA � −0.83)
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FIGURES

FIG. 1. The dispersion relation in 2 component plasma (top) and in 3 component plasma

(bottom), the solid lines are the dispersion relations, and the dashed line is the resonance line for

heavy ions (α particles) and the dot-dashed line for protons.
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FIG. 2. (a): Constant ε circles in (v‖, v⊥) space. ε means the energy conversation in the wave

frame. The particle motions are constrained to a constant ε circle. The arrow shows a typical

particle trajectory in this space. (b): Constant χ curves in (ψ, v‖) space. The arrow shows the

trajectory of a typical resonant particle in this space. (c): An arrow is the trajectory of a typical

resonant particle motion in (v‖, v⊥) space. We also draw constants ε (thin solid circles) and resonant

width (thick solid curves). The pitch-angle scattering of resonant particles is constrained to a ε

circle from v‖ = VR − Vt to VR + Vt. (d): An illustration of the resonant particle motion in one

coherent wave in the real space. A resonant particle senses the wave phases corresponding to a

half of wavelength in one coherent wave.
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FIG. 3. (Left): Test particles at Ωpt = 100 in velocity space. (Right): The trajectory of typical

test particle (solid lines) and ε constant curves by two waves (thin curves) in the velocity space.

Top is for run 1 (protons) and bottom is for run 2 (heavy ions).
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FIG. 4. The time evolution of v⊥ (a), the pitch angle (the angle between the ambient field

and particle velocity) (b) and the phase angle (ψ) between v⊥ and B⊥ of the wave 1 (c) for all

test particles in the case of run 1 (for protons). The horizontal axis is time normalized by Ω−1
p ,

the vertical axis is v⊥ normalized by VA and color counter is the particle number density with a

logarithm scale. We define the sign of the pitch-angle is positive when v‖ > 0 and is negative when

v‖ < 0. (d): An illustration of the resonant particle motion in the two coherent SBAs in the real

space in the case of run 1 (for protons). The resonant particle trapped by the wave 1 experiences

various phases of the wave 2 and one can regard the particle motions as stochastic.
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SPASPA

SBA

FIG. 5. The time evolution of v⊥ distribution and theoretical result (dashed line) (a), the pitch

angle (b), and ψSPA, an angle between v⊥ and B⊥ of the SPA (c) in the case of run 2 (for heavy

ions). (d): An illustration of the resonant particle motion in the coherent SPA (thin curve) and

SBA (dense curve) in the real space in the case of run 2 (heavy ions). Within the resonant particle

being trapped by short wave SBA, the particle always experiences the specific phase of the SPA.
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FIG. 6. An illustration of typical particle motion (dashed curve) in the velocity space (top)

and in the (ψ, v‖) space (bottom) in the case of run 1 (for protons). We also draw constants ε

curves (thin solid circles) and resonant width (thick solid curves) on the top panel. A particle is

sometimes trapped by one of two waves and is sometimes trapped by another wave.
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FIG. 7. An illustration of typical particle motion (dashed curve) in the velocity space (top) and

in the (ψ, v‖) space (bottom) in the case of run 2 (for heavy ions). We also draw constants ε curves

(thin solid circles) and resonant width (thick solid curves) on the top panel. The resonant particle

trapped by the SBA cannot orbit around the trapping circle of the SPA because the particles

cannot obtain the varying of v‖ enough to orbite around the trapping circle of the SPA, therefore

ψSPA is not changed.
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FIG. 8. (a): The index α (color) obtained from a fitting equation, 〈v⊥〉 = ctα (tΩp = 0 → 1000)

in various parameters of two waves in the case of heavy ions. The horizontal and vertical axes are

Pf SPA/Pf SBA and Vph,SPA/Vph,SBA, respectively. White hatched area enclosed white dashed curves

is the strong heating area obtained by the theory discussion in Section IV. We also perform case

studies, the case of weak SPA, λSPAB⊥,SPA � λ,SBAB⊥,SBA (black circle) and the case of strong SPA,

B⊥,SPA � B⊥,SBA (a black square). (b): The index c/AE in the case of heavy ions, where c means

numerical heating ratio given by 〈v⊥〉 = ctα and AE is theoretical hating ratio. In order to avoid

misleading, we only plot c/AE satisfying α > 0.9 (the strong heating region) because c does not

mean heating ratio when α �� 1, for example c means a constant velocity, 〈v⊥〉 = c when α = 0.

White dashed curves are same as (a)
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FIG. 9. (a): The time evolution of v⊥ in the case of weak SPA, λSPAB⊥,SPA � λSBAB⊥,SBA (black

circle in Figure 8). White dashed line is the theoretical heating ratio. (b): An illustration of a

typical particle motion in (ψ, v‖) space.
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FIG. 10. (a): The time evolution of v⊥ in the case of strong SPA, B⊥,SPA � B⊥,SBA (black

square in Figure 8). (b): An illustration of a typical particle motion in (ψ, v‖) space.
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FIG. 11. The index α (a) and the index c/AE (b) in the case of protons in the same format as

Figure 8.
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FIG. 12. The index α in the case of the 2 component plasma in the same format as Figure 8

except the vertical axe is the resonant velocity.
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FIG. 13. The time evolution of v⊥ (a) and ψ,Whistler (b) in the case of the 2 component plasma

(black square in Figure 12).
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