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This working review shows recent agent-based models (ABMs) for financial market (artificial market simulations)
to discuss financial regulations and/or rules. This review aimed to introduce recent papers as many as possible.
See [Mizuta 25], Financial Market Design by an Agent-Based Model, text book published by Springer Nature for
more details of importance of discussion into design financial markets with artificial market models, contribution
to society and how to build and use such models. ([Mizuta 20a] has related materials, detail presentation slides
and a presentation movie on YouTube.)
It is very difficult to discuss about changing financial market regulations and/or rules by only using results of

empirical studies. An artificial market, which is a kind of an agent-based model, can isolate the pure contribution
of changing the regulations to the price formation and can treat situations that have never occurred. These are
strong points of the artificial market simulation study. Recently, some artificial market studies contributed to
discussion what financial regulations and rules should be, for example, price variation limits and short selling
regulation whether preventing bubbles and crushes or not, tick size, usage rate of dark pools, rules for investment
diversification, speed of order matching systems on financial exchanges, frequent batch auctions, how active funds
that trade infrequently make a market more efficient, an interaction between leveraged ETF markets and underlying
markets and micro-foundation of price variation model using intelligence of artificial market simulation studies. I
will review those studies.

1. Artificial Market Simulation

This working review shows recent agent-based models

(ABMs) for financial market (artificial market simulations)

to discuss financial regulations and/or rules. This review

aimed to introduce recent papers as many as possible. See

[Mizuta 25], Financial Market Design by an Agent-Based

Model, text book published by Springer Nature for more

details of importance of discussion into design financial mar-

kets with artificial market models, contribution to society

and how to build and use such models. ( [Mizuta 20a] has

related materials, detail presentation slides and a presenta-

tion movie on YouTube.)

[Mizuta 20a] described that ‘designing a financial mar-

ket that works well is very important for developing and

maintaining an advanced economy, but is not easy because

changing detailed rules, even ones that seem trivial, some-

times causes unexpected large impacts and side effects. A

computer simulation using an agent-based model can di-

rectly treat and clearly explain such complex systems where

micro processes and macro phenomena interact.’

It is very difficult to discuss about changing financial mar-

ket regulations and/or rules only by results of empirical

studies. Because so many factors cause price formation in

actual markets, an empirical study cannot isolate the pure

contribution of existing new type regulations or of chang-

ing rules to price formation. Furthermore, empirical studies

cannot investigate situations that have never occurred be-

fore in real financial markets.

We usually discuss whether regulations should be

changed or not on the basis of their effects on price forma-

tion. An artificial market, which is a kind of a multi-agent
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simulation (an agent-based model), can isolate the pure con-

tribution of changing the regulations to the price formation

and can treat situations that have never occurred [LeBaron

06, Chakraborti 11, Chen 12, Cristelli 14, Todd 16, Mizuta

20a]. These are strong points of the artificial market simu-

lation study.

Not only academies but also financial regulators and

stock exchanges are recently interested in multi-agent sim-

ulations such artificial market models to investigate regu-

lations and rules of financial markets. Indeed, the Science

article [Battiston 16] described that ‘since the 2008 crisis,

there has been increasing interest in using ideas from com-

plexity theory (using network models, multi-agent models,

and so on) to make sense of economic and financial markets’,

and the Nature article [Farmer 09] described that ‘such

(agent-based) economic models should be able to provide

an alternative tool to give insight into how government poli-

cies could affect the broad characteristics of economic per-

formance, by quantitatively exploring how the economy is

likely to react under different scenarios’. [Aruka 17,Mizuta

20a] also claimed importance of an artificial market simula-

tion. [Segovia 22] analyzed bibliometric on artificial market

models.

Recently, some artificial market studies contributed to

discussion what financial regulations and rules should be

[Todd 16,Mizuta 20a], for example, price variation limits

and/or short selling regulation whether preventing bubbles

and crushes or not [Yagi 10, Yeh 10, Mizuta 13b, Mizuta

15b,Mizuta 16c,Veld 16, Zhang 16, Llacay 19,Xiong 22, Li

24b,Yang 25b,Dong 24a], the rule for investment diversifica-

tion [Yagi 17], transaction taxes [Westerhoff 08,Veryzhenko

17], financial leverages [Thurner 12,Veld 16], circuit break-

ers [Kobayashi 11,Muranaga 99,Dong 24b], tick size [Darley

07,Mizuta 13a,Collver 17,Yang 20,Zhao 20,Mizuta 22a], fre-



quent batch auctions [Mizuta 16a], usage rate of dark pools

[Mo 13, Mizuta 14, Mizuta 15c], speed of order matching

systems on financial exchanges [Mizuta 15a, Mizuta 16d],

the effects of different regulatory policies directed towards

high frequency traders (HFTs) [Leal 16], effects of Basel

and value at risk [Cheng 17,Llacay 17], one-sided and two-

sided markets [Zhou 17], settlement cycle [Xiong 17], exten-

sion of trading hours [Miwa 18], maker-taker fees [Hoshino

22,Guan 24a], short-selling limitation [Noritake 22], capital

adequacy ratio (CAR) regulation in the Basel regulatory

framework [Hirano 20], policy maker intervention to pre-

vent bubbles and crashes [Westphal 23] and so on.

Of course, many artificial market simulation studies in-

vestigated the nature of financial markets, detection of

factors influencing market liquidity [Yagi 19], how active

funds that trade infrequently make a market more ef-

ficient [Mizuta 17, Mizuta 19b], investigation of interac-

tion between leveraged ETF markets and underlying mar-

kets to price formation using artificial market simulations

[Yagi 16, Yagi 20a, Mizuta 23, Mizuta 24], effects of arbi-

trage in ETFs [Torii 15, Mizuta 19a, Shearer 21, Shearer

22, Yagi 24, Guan 24b], micro-foundation of price varia-

tion model using intelligence of artificial market simulation

studies [Mizuta 16b], market efficiency [Immonen 17,Pruna

16,Tsao 17,El Oubani 21], market impacts [Cui 12,Oesch

14, Bouchaud 18], especially market impacts of institu-

tional investors [Luo 20], trading volume and price distor-

tion [Lespagnol 17], financial market bubble and crush [Yagi

12,Paddrik 12,Torii 15,Schmitt 16,Benhammada 17,Lucas

18,Agliari 18,Shearer 21,Shearer 22,BEK 23,Zhu 23], mar-

ket liquidities on the network of banks [Sakiyama 16], effects

of insider traders [Fuchen 18], immature markets [Krich-

ene 16], interaction between option markets and underlying

markets [Kawakubo 14a, Kawakubo 14b], effects of mar-

ket makers [Kuno 22, Zhou 24], effects of market makers

and passive funds [Braun-Munzinger 16], effects of HFTs

[Gsell 09,Wang 13,Kusada 14, Xiong 15, Hanson 16,Man-

des 19, Yagi 20b, Gao 22], effects of HFTs using an or-

der book imbalance strategy [Yagi 23], effects of arbitrage

trading between markets that have different latencies [Wah

13,Wah 16,Wellman 17,Duffin 18], an information diffusion

on investors’ multi-later networks [Biondo 16, Alsulaiman

17, Zhang 17, Biondo 17], role of behavioral heterogeneity

[Hessary 17,Masmoudi 21], an investor network and herd-

ing [Bermúdez 16,Krichene 17,Wang 17], comparing behav-

iors of actual and simulated HFT traders [Hirano 19,Hirano

21a], optimizing HFT strategy in an artificial market simu-

lation [Maeda 20], competition on analysts’ forecasts [Zhang

20], interaction between trades of large funds and those of

individual investors [Shi 21], effect of increasing horizontal

shareholding with index funds on competition and market

prices [Mizuta 18], information game [Ben Abdelaziz 21], a

communication line with relativistic delay [Lerner 21], im-

pact of arbitrages [Zhou 21], order cancellations [Yoshimura

20], spoofing orders [Mizuta 20c, Wang 21], the effect of

risk preferences and optimal rebalancing frequency on per-

formance [Veryzhenko 21], information cascades [Benham-

mada 21], VaR forecasting [Tubbenhauer 21], essentially

instability of financial markets by optimizing investment

strategies [Mizuta 22b], manipulation of benchmark and

closing price [Shearer 22], effects of liquidation strategies

[Luo 22], many learning traders interacting [Dicks 23,Lus-

sange 24], effects of switching trade-strategies [Bassi 23],

short squeeze [Matei 22], effects of noise traders [Dai 23],

market impact of financial literacy [Zhou 23], effects of stop

loss orders [Liston 24], effects of belief [Albers 24],over-

the-counter (OTC) market [Vidler 24], an investor struc-

ture [Zhao 24], interplay of cross market [Gatti 24], cap-

turing persistent jumps [Song 24], illiquid markets [Fluri

24], meme stocks [Matsumoto 25] and so on. [Kita 16] re-

viewed the U-Mart project which is one of Japanese top

artificial market research projects in the 2000s. Recently,

PhalmJ∗1 that is a platform of an artificial market model is

also used. [Hirano 22a,Hirano 23] quantitatively fit param-

eters of artificial market models using machine learning.

There are studies of AI traders learning in artificial mar-

kets such as a execution algorithm AI divides the orders

and automatically places orders little by little [Karpe 20],

AI technical traders [Izumi 09,Maharani 24] and an AI port-

folio manager [Kuo 21,BIO 24].

[Hirano 22b] proposed a concept called the artificial mar-

ket data mining platform in which a model designed to eval-

uate a trading strategy tuned up on data mining. The

model can fairly evaluate strategies without actual data

dependence. Further more, the model can change envi-

ronment through changing its parameters and this study

showed that different environment leads to be different dif-

ficulty of prediction for returns. So, users can test a trading

strategy in the several environment on this model. More-

over, this study showed that parameters of an artificial mar-

ket model should satisfy that the trading strategies should

not unrealistically perform and this shows a new way vali-

dating parameters of an artificial market model. There are

some studies to discuss for validation of an artificial market

model, e.g., [Faria 22].

Recently, who should be charged with responsibility for

an artificial intelligence performing market manipulation

have been discussed. [Mizuta 20b] constructed an artifi-

cial intelligence using a genetic algorithm that learns in

an artificial market simulation, and investigated whether

the artificial intelligence discovers market manipulation

through learning with an artificial market simulation de-

spite a builder of artificial intelligence has no intention of

market manipulation. As a result, the artificial intelligence

discovered market manipulation as an optimal investment

strategy. This result suggests necessity of regulation, such

as obligating builders of artificial intelligence to prevent ar-

tificial intelligence from performing market manipulation.

On the other hand, [Byrd 22] showed the way how to

make an AI not to manipulate and spoof.

[Zare 21] built an artificial market model to detect price

manipulation. [Li 22] investigated impact of spoofing trades.

[Shearer 23] investigated manipulating a financial bench-

mark using an artificial market model. [Gu 24] investigated

effects of liquidity on the “spoofability.”

∗1 https://github.com/plham/plhamJ
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Recently, artificial market models to test new automated

trades, high frequency trades and market impacts by an

trade-execution algorithm have been emerged, especially,

[Li 20,Coletta 21,Hirano 21b,Hirano 22c,Kolm 22,Coletta

22,Nagy 23,Coletta 23,Li 24a,Huang 24,Mascioli 24,Prata

24, Berti 25, Yang 25a] introduced a new approach of an

artificial market model where they built generators of re-

alistic stock market order streams that are learning actual

data of orders using machine learning models. There are

also bench-marking for such models [Nagy 25]. It is very

large merit that the models can generate realistic order

flows without assuming any agent strategies and are suit-

able to test new automated high speed or high frequency

strategies. [Potluru 23] is a great review for synthetic data

applications in finance including synthetic and generative

trades data using an artificial market model.

By the way, [Mizuta 22b] showed financial markets are

essentially unstable by optimizing investment strategies.

Even if all other traders are fixed, only one investor will

use backtesting to optimize their strategy, which leads

to the time evolution of market prices becoming unsta-

ble. Optimization instability is one level higher than ”non-

equilibrium of market prices.” Therefore, the time evolution

of market prices produced by investment strategies having

such unstable parameters is highly unlikely to be predicted

and have stable laws written by equations. This nature

makes us suspect that financial markets include the prin-

ciple of natural uniformity and indicates the difficulty of

building an equation model explaining the time evolution

of prices.

Recently, investigation on deep hedging sometimes uses

an artificial market [Kang Gao 23].

Macro-economics should also investigated by agent-based

models to discuss for financial and/or fiscal policy by cen-

tral banks and government. There are many studies trying

such very important and difficult investigation [Ogibayashi

14,Guerini 22,Guilmi 22,Reissl 22,Kopiec 22,Peters 22,Ne-

uner 22, Chen 23, Knicker 23, Glielmo 23, Takashima 24,

Bardoscia 24, Pallante 24, Kotb 24, Hommes 24, Brusatin

24,Dwarakanath 24,Rusnak 24,Poledna 23,Domenico 25].

[Noia 24] included bond market to a macro-economics arti-

ficial market. [Sasaki 25] developed FX markets. The great

review book is [Gallegati 17,Ogibayashi 22,Farmer 22,Ax-

tell 25, Ionescu 25].

I will review some of those studies on the next section.

The artificial market simulation models simulate macro

processes such as investors and order matching on a com-

puter. Artificial market studies observe macro phenomena

such as price variations as a result of the modeled macro

processes. Artificial market models only modelize the micro

processes and observe macro phenomena, therefore, artifi-

cial market models are fully micro-founded models. So, ar-

tificial market models have been gaining intelligence micro-

macro interaction mechanisms such as what micro processes

amplify price variations.

An artificial market can isolate the direct effect of changes

the regulations to price formation, and can treat situations

that have never occurred. However, outputs of artificial

market simulations may not be accurate or credible fore-

casts in actual markets. It is an important for artificial

market simulations to show possible mechanisms affecting

price formation through many runs and gain new knowl-

edge; conversely, a limitation of artificial market simula-

tions is that their outputs may, but not certainly, occur in

actual financial markets.

Therefore, for more detailed discussions, they should

compare the simulation results to those from studies us-

ing other methods, e.g. empirical studies, would not show

such possible mechanisms. Indeed, artificial markets should

replicate macro phenomena existing generally for any asset

and any time. Price variation, which is a kind of macro

phenomena, is not explicitly modeled in artificial markets.

Only micro processes, agents (general investors), and price

determination mechanisms (financial exchanges) are explic-

itly modeled in artificial markets. Macro phenomena are

emerging as the outcome interactions of micro processes.

Therefore, the simulation outputs should replicate general

macro phenomena at least to show that simulation models

are probable in actual markets.

However, it is not a primary purpose for the artificial

market to replicate specific macro phenomena only for a

specific asset or a specific period. An unnecessary repli-

cation of macro phenomena leads to models that are over-

fitted and too complex. Such models would prevent our un-

derstanding and discovering mechanisms affecting the price

formation because of related factors increasing.

Indeed, artificial market models that are too complex

are often criticized because they are very difficult to evalu-

ate [Chen 12]. A too complex model not only would prevent

our understanding mechanisms but also could output arbi-

trary results by over-fitting too many parameters. Simpler

models harder obtain arbitrary results, and are easier eval-

uated.

As Weisberg mentioned [Weisberg 12], “Modeling, (is)

the indirect study of real-world systems via the construction

and analysis of models.” “Modeling is not always aimed at

purely veridical representation. Rather, they worked hard

to identify the features of these systems that were most

salient to their investigations.” Therefore, under different

phenomena to focus on, good models are different. Thus,

a model is good only for the purpose of study and may be

not good for other purposes.

Therefore, previous studies constructed an artificial mar-

ket models that are as simple as possible and do not in-

tentionally implement agents to cover all the investors who

would exist in actual financial markets.

The next section, I review some of recent artificial market

studies for financial market regulations and/or rules.

2. Recent Studies for Financial Market
Regulations and/or Rules

2.1 Bubble, Crash, Price Variation Limit and
Short Selling Regulation

[Mizuta 13b] built an artificial market model, based on

the model of [Chiarella 02], implementing a learning process

3



to replicate bubbles and investigated a price variation limit

whether preventing bubbles and crush or not. The price

variation limits are expected to be an especially effective

way to prevent bubbles, so the model should be able to

replicate bubbles.

When they gave a bubble-inducing trigger, which is a

rapid increment of the fundamental value, a bubble oc-

curred in the case with the model implementing the learning

process but did not occur in the case without the process.

They also showed that a hazard rate enables validation of

whether the models can replicate a bubble process or not.

[Mizuta 15b] built an artificial market model, based on

the model of [Chiarella 02], and compared effects of price

variation limits, short selling regulations and up-tick rules.

In the case without the regulations, the price fell to be-

low a fundamental value when an economic crush occurred.

On the other hand, in the case with the regulations, this

overshooting did not occur. However, the short selling reg-

ulation and the up-tick rule caused the trading prices to be

higher than the fundamental value.

They also surveyed an adequate limitation price range

and an adequate limitation time span for the price vari-

ation limit and found a parameters’ condition of the price

variation limit to prevent the over-shorts. They also showed

the limitation price range should be bigger than a volatility

calculated by the limitation time span.

[Mizuta 16c] investigated effects of price variation lim-

its and up-tick rules in large price fluctuation turbulence

caused by large erroneous orders, and investigated whether

dark pools stabilize markets or not.

They found that the amount of erroneous orders decided

ranges of price falls. They also found that the limited time

span of price variation limits should be shorter than the

time of erroneous orders existing to prevent large turbu-

lence. For the effects of up-tick rules adopting a trigger

method they found that in the cases with time unlock, ef-

fect time of the up-tick rule is not very different from the

time of erroneous orders existing, and this prevents large

turbulence. In the case with price unlock, the rules prevent

large turbulence in all cases.

Because we cannot forecast how long an investor would

erroneous order in actual financial markets, it is implied

that actual stock markets should employ several price vari-

ation limits that have different limited time spans. Tokyo

Stock Exchange employs two kinds of price variation limits

that adopt different time spans: one is daily price limit,

300 minutes and the other is special quote, 3 minutes. It is

implied that Tokyo Stock Exchange should employ another

price variation limit having shorter limited time spans than

one minute because HFTs (High Frequency Trading) are

increasing recently.

The results investigating the up-tick rules suggest that

the price unlock is a better unlock method than time un-

lock, which the Japan Financial Services Agency adopted

on November 2013. However, more detail discussion would

be future study.

2.2 Rule for Investment Diversification
As financial products have grown in complexity and level

of risk compounding in recent years, investors have come to

find it difficult to assess investment risk. Furthermore, com-

panies managing mutual funds are increasingly expected to

perform risk control and thus prevent assumption of unfore-

seen risk by investors. A related revision to the mutual fund

legal system in Japan led to establishing what is known as

“the rule for investment diversification” in December 2014,

without a clear discussion of its expected effects on mar-

ket price formation having taken place. [Yagi 17,Nozaki 17]

used an artificial market to investigate its effects on price

formation in financial markets where investors must follow

the rule at the time of a market crash that was caused by

the collapse of the asset fundamental price. As results, they

found that, in a two-asset market where investors had to

follow the rule for investment diversification, when the fun-

damental price of one asset collapsed and its market price

also collapsed, the other asset market price also fell [Yagi

17]. They also found that the possibility that when the fun-

damental price of one asset collapses and its market price

also collapses, some asset market prices also fall, whereas

other asset market prices rise for a market in which investors

follow the rule for investment diversification [Nozaki 17].

2.3 Tick Size
[Mizuta 13a, Mizuta 22a] investigated competition, in

terms of taking market share of trading volume between

two artificial financial markets that had exactly the same

specifications except tick size and initial trading volume

using multi-agents simulations.

When the tick size of market A, ∆PA, was larger than

approximately the standard deviation of tick by tick return,

σt, if the tick size of market B, ∆PB , was enough smaller

than ∆PA, much trading occurred in market B inside ∆PA.

Therefore, market B took market share of the trading vol-

ume from market A.

On the other hand, when ∆PA was smaller than approx-

imately σt, even if ∆PB was very small, price fluctuations

cross many widths of ∆PA and enough price formations oc-

curred only in market A. Therefore, market B could rarely

take market share of trading volume from market A.

They also compared these simulation results with empiri-

cal data from the Tokyo Stock Exchange. They argued that

this investigation will enable discussion about the adequate

tick sizes markets should adopt.

After [Mizuta 13a] be published, [Nagumo 16, Nagumo

17] built a simple model and introduced general analytical

solutions explaining moving speed of trading volume share

in competing financial markets due to tick size differences.

The general analytical solutions showed that share is shifted

from a market with a larger tick size to a market with a

smaller tick size, and that the size of share-shift is deter-

mined by difference between tick sizes, not ratio between

tick sizes.

[Yang 20] investigated more details than [Mizuta 13a,

Mizuta 22a] espesically about market quality(market liq-

uidity).

They investigated the way that minimum tick size affects
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market quality based on an artificial market. The simula-

tion results indicated that stepwise and combination sys-

tems can promote market quality in certain aspects, com-

pared with a uniform system. A minimal combination sys-

tem performed the best to improve market quality. These

results implied that a minimal combination system could

be considered a new direction for market policy reform to

improve market quality.

2.4 Frequent Batch Auctions
[Mizuta 16a] implemented a price mechanism that is

changeable between a comparable continuance double auc-

tion (CDA, δt = 1) and a frequent batch auction (FBA,

δt > 1) continuously introducing a new parameter, a batch

auction interval δt. And then, they analyzed profits/losses

and risks of market maker strategies (MM) and investigated

whether MM can continue to provide liquidity even on FBA

by using an artificial market model.

Their simulation results showed that δt is larger, execu-

tion rates of MM is smaller and this causes to reduce liquid-

ity supply by MM. Furthermore, they suggested that when

δt is larger (FBA), MM cannot avoid both an overnight risk

and a price variation risk intraday. Furthermore, they also

suggested that when δt > 1 (FBA) it is very difficult that

MM is rewarded for risks and continue to provide liquidity.

Only the case of δt = 1 (CDA) MM is rewarded for risks

and continue to provide liquidity.

These suggestions implies that MM that can provide liq-

uidity on CDA cannot continue to provide liquidity on FBA

and then many MM retire, and finally liquidity will be re-

duced. This implication is consistent with the argument

by [Otsuka 14,Melton 17].

2.5 Dark Pool
[Mizuta 15c] investigated how a dark pool, in which no

order books are provided, affects financial markets’ effi-

ciency and price-discovery function by using the artificial

market model. This is a very important investigation into

financial systemic risk because making a market inefficient

and losing the price-discovery function may make the mar-

ket unstable and increase financial systemic risk. In this

study, they additionally implemented a smart order routing

(SOR) to treat actual market selection of investors. They

discussed quantitatively how spreading of dark pools be-

yond our experience could affect the price-discovery func-

tion. They also aimed to clarify the mechanism of a dark

pool that makes a market efficient or inefficient.

They found that market inefficiently (Mie) was decreased

sharply by raising the share of the trading value amount

of the dark pool (D) in D ≲ 70%. On the other hand,

in D ≳ 70%, Mie increased significantly. This indicates

that there is an optimal usage rate of the dark pool for the

market efficiency.

The reason Mie decreased in D ≲ 70% is that the exe-

cution rates in the lit market are reduced by more market

orders being sent to the dark pool by the SOR than limit

orders increasing D. This leads the depth of limit orders

to become thicker, these thicker limit orders absorb market

orders, and thus the market price is still stable near the

fundamental price.

The reason Mie increased significantly in D ≳ 70% is as

follows. When a market price (P t) becomes much higher

than the fundamental price (Pf ), many waiting buy orders

are stored in the dark pool and averaged estimated returns

(rte,j) for all agents are negative, which means that agents

make market sell orders. These market sell orders could

have made P t converge to Pf , but many waiting buy or-

ders stored in the dark pool absorb these market sell orders

and prevent P t converging to Pf . Therefore, P t maintains

a much higher price than Pf , and the lit market is made

inefficient. When P t becomes much lower than Pf , the op-

posite occurs.

They also discussed mechanisms by which a dark pool

makes a market efficient or inefficient by a simple equa-

tion model. The equations about an execution rate they

derived indicate that whether D > 1/2 or D < 1/2 is in-

trinsically important to whether markets become efficient or

inefficient. Therefore, this suggests that the optimal usage

rate of the dark pool for the market efficiency is D = 1/2

and that a trading volume amount in dark pools higher

than that in lit markets makes markets inefficient. They

also compared results of the equations with those of simu-

lations and found similar tendencies.

They also derived an equation showing the boundary of

a buy-sell imbalance at which dark pools destroy the price-

discovery function. They also discussed that when the us-

age rate of dark pools is low, for example D = 20%, the

equation suggests that dark pools rarely destroy the price-

discovery function even though a large buy-sell imbalance

occurs. On the other hand, when the usage rate of dark

pools is very high, for example D = 90%, this equation sug-

gests that dark pools very easily destroy the price-discovery

function by a very slight buy-sell imbalance.

A future study is to investigate more details of the op-

timal usage rate of dark pools for the market efficiency.

Our results suggested the optimal usage rate was around

50% − 70%, which is much higher than about 8%, which

is the cap level of dark pools that European regulators are

discussing. However, they could not determine the precise

level of the optimal usage rate of dark pools for the market

efficiency.

Another future study is comparing the simulation results

with empirical data. Indeed, they cannot observe Mie of

real markets by empirical data because they cannot find

fundamental prices in real markets. On the other hand,

they can observe an execution rate, depth of limit orders

and a bid ask spread of each stock in real lit markets from

empirical data. In addition, they can estimate D of each

stock from some statistics. D are different from one stock

to another. Therefore they can draw figures from empiri-

cal data plotting each stock having different D, execution

rates and so on. To compare these figures with simulation

results, they can compare the simulation results with em-

pirical data.

They also observe buy-sell imbalances in real lit markets

from empirical data. They can discuss how much D may

destroy the price-discovery function in real financial mar-
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kets.

2.6 Increasing Speed of Order Matching Sys-
tems on Financial Exchanges

[Mizuta 15a,Mizuta 16d] constructed a simple artificial

market model in which the latency was implemented and

investigated price formations and market efficiency for var-

ious latencies. They clarify the mechanisms of the direct

effects of latency on financial market efficiency and discuss

how much of an increase in speed is needed for market effi-

ciency.

If the latency is large, agents cannot quickly change

their estimated prices when the market trend has finished.

Agents then make unnecessary market orders, and such

market orders increase the execution rate. They argued

that increasing the execution rate reduces limit orders to

near the market price, widens the bid ask spread, and makes

the market becomes less efficient. This indicates that la-

tency should be sufficiently smaller than the average order

interval for a market to be efficient.

The largest contribution of this study was the possibly

that a large latency (too slow of a matching system) would

directly make market price formation inefficient. Therefore,

too slow of a matching system might destabilize a market.

This implication is generally opposite to that in which the

increase in the speed of matching systems might destabilize

financial markets.

They also analyzed empirical data of the Tokyo Stock Ex-

change and compared the results with simulation results. It

is possible that the market was chronically inefficient dur-

ing a large portion of trading time due to the latency before

the introduction of new trading system, “arrowhead”, from

2010 in the Tokyo Stock Exchange. On the other hand, the

market is not chronically inefficient due to the latency at

least for a time scale of minutes after the introduction of

arrowhead.

For future work, they will investigate the case of a large

amount of orders for less than one minute after very impor-

tant news. They did not consider this case for specific and

very short spans in the simulations of this study. They im-

plemented only normal agents replicating general investors;

however, latency was more important, especially for HFTs

whose investment strategies are market maker, arbitrage,

and so on. They should discuss the latencies for different

types of agents for future work.

2.7 Effects of several Regulations directed to-
wards HFTs

[Leal 16] constructed an agent-based model to analyze

the effectiveness of a set of regulatory policies on market

volatility, and on the occurrence and the duration of flash

crashes. analyzed the impact of policies trading halt facil-

ities (both ex-post and ex-ante designs), minimum resting

times, order cancellation fees, and transaction taxes. These

policies have been proposed and implemented in many de-

veloped countries to prevent flash crashes.

Simulations results showed that, policies slowing down

the order cancellation of HFTs, like the implementation of

minimum resting times or cancellation fees lead to signifi-

cant improvements in terms of lower market volatility and

incidence of flash crashes. Also the introduction of a finan-

cial transaction tax, by discouraging HFTs, can improve

market stability, although the effectiveness of such a mea-

sure is much lower compared to policies targeting order can-

cellation, and effects are relevant only for high values of the

tax.

At the same time, all these policies are characterized by a

trade-off between market stability (in terms of lower volatil-

ity and number of flash crashes) and market resilience (in

terms of longer recoveries from a crash). This trade-off

emerges because of the positive role played by HFTs in

quickly restoring good liquidity conditions after a crash.

Regulatory policies introduce important distortions in such

a process, thereby contributing to lengthen the duration of

price-recoveries. The beneficial impact of HFTs on price

resilience also underlies the results concerning the study

of the impact of circuit breakers, and in particular explain

why ex-post circuit breakers have no effect on volatility and

have a negative impact on the duration of flash crashes. In

contrast, they found that ex-ante circuit breakers are very

effective, as they markedly reduce price volatility and com-

pletely remove flash crashes.

Overall, simulation results suggest that regulatory poli-

cies can have quite complex effects on markets populated

by normal investors and HFTs. From the viewpoint of pol-

icy design, our analysis highlights in particular the impor-

tance of understanding the different transmission mecha-

nisms through which the effects of regulatory policies un-

fold. Moreover, it points out the need of taking into ac-

count the fundamental dual role played by HFTs. On the

one hand, HFTs can be the source of extreme events like

flash crashes by placing aggressive sell orders and removing

liquidity from the market. On the other hand, it can play

a leading role in the recovery from the crash, by quickly

restoring liquidity.

3. Some Recent Studies for the Nature
of Financial Markets

3.1 Detection of Factors Influencing Market
Liquidity

[Yagi 19,Yagi 20b] investigated which market factors af-

fect major liquidity indicators, including Volume, Tight-

ness, Resiliency, and Depth, using an artificial market,

which is a type of agent-based simulation system. As a

result, market liquidity based on Volume is completely op-

posite to market liquidity based on Tightness, Resiliency,

or Depth. Moreover, they confirmed the price decline rate

from the fundamental price and the price convergence pe-

riods to the fundamental price as a measure of the conver-

gence speed, which is the original meaning of Resiliency,

from the price level, which has been brought about by ran-

dom price changes. Therefore, the trades of fundamental-

ists have the effect of shortening the convergence period,

i.e., causing market liquidity to increase.
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3.2 How active funds that trade infrequently
make a market more efficient

Since managers of active funds choose stocks that are ex-

pected to raise their prices on the basis of the fundamental

value, many argue that active funds discover the funda-

mental value and make a market more efficient. However,

it has not been clear whether actual active funds make a

market more efficient or not. It has been shown that active

funds that trade infrequently earn more. At first glance,

infrequent trades seem to not impact and change market

prices and this leads to market prices not converging with

the fundamental price. Therefore, it is important to discuss

whether active funds that trade infrequently make a market

more efficient or not, and if so, we should investigate the

mechanism of how they do so.

[Mizuta 17,Mizuta 19b] built a model of investors who

trade infrequently in an artificial market model, and they

investigated effects of these investors on market prices and

whether they make a market more efficient by using the

model.

The results indicated that such active investors trade fre-

quently in the rare situation that the market becomes un-

stable and inefficient due to the market price moving away

from the fundamental price. These trades, occurring only

at a necessary time, impact the market prices and lead them

converging with the fundamental price. This leads prevent-

ing the market from becoming more unstable and less effi-

cient.

Though the trading volume of fundamental investors is

low throughout whole period, the volume increases greatly

only when a market becomes less efficient, and these trades

then make the market efficient. An increasing market

volatility makes the order prices of speculators (technical

investors) move further away from the fundamental price,

and this leads to amplifying market volatility more exces-

sively.

It is possible that the orders of active investors prevent

this amplification. This also implies that money moving

from active funds to passive funds leads a market to become

less efficient.

3.3 Interaction between a Leveraged ETF and
an Underlying

[Yagi 16] built an artificial market model, based on the

model of [Yagi 10], implementing rebalancing trades of a

leveraged ETF, and investigated impact of the rebalancing

trades on the price formation of future index (underlying

asset) market. They found that a market impact (MI) per

a volatility (V) is very important key parameter, when MI

< V the index future market becomes stable, on the other

hand when MI > V the index future market becomes un-

stable. They also showed the possible mechanism of such

destabilizing market.

[Yagi 20a] compared different strategies of trading of a

leveraged ETF for a proposed trading model in a continuous

double auction market using an agent-based simulation, and

report how best to suppress an increase in market volatility.

As a result, it was found that as the minimum number of

orders in a rebalancing trade increases, the impact on the

market price formation decreases.

3.4 Micro-Foundation of Price Variation
Model

[Mizuta 16b] tried micro-foundation of the ARCH(1)

model, which is a kind of financial risk asset price varia-

tion model, using intelligence of artificial market simulation

studies. That is they tried to clarify which micro processes

determine each coefficient of the ARCH(1) model. Then

they obtained,

σ2
t = ρ2k2 + 2ρ2k2 l

α
r2t−1. (1)

The dispersion of investors’ estimated prices(ρ) is larger or

the orders by the buy-sell imbalance taking liquidity(k) is

larger, the volatility is larger. The ration of the normal

investors taking liquidity to the normal traders providing

liquidity(l) is higher or the measure of risk aversion of the

normal investors(α) is lower, the magnitude of volatility

clustering is larger.

There are two future works. One is an empirical study

validating our model. Another one is more detail discussion

of our assumptions that are too strong assumptions for real

financial markets.

[Nakagawa 25] studied future works of this section.

4. Testing new automated trades in an
artificial market

The ACM International Conference on AI in Finance∗2

had been held from 2020 sponsored by JP Morgan Chase &

Co., the conference featured many presentations on artificial

market studies, especially, artificial market models to test

new automated trades, high frequency trades and market

impacts by an trade-execution algorithm.

When buying or selling a large amount of a particular

stock, investors should place only a few orders at a time be-

cause placing them all at once would impact market prices

significantly. A trade-execution algorithm divides the or-

ders and automatically places orders a few at a time. A bet-

ter trade-execution algorithm enables an investor to trade a

large amount with better prices; therefore, the performance

of the algorithm is very important especially for larger in-

vestors like as institutional investors.

[Byrd 19] built an artificial market simulation platform,

ABIDES, an Agent-Based Interactive Discrete Event Sim-

ulation environment, to test such automated trades. The

platform implemented many and deeply detailed compo-

nents; for instance, the agent repeated the orders of actual

financial markets and replicated the latency, which is delay

of order information between investors and exchanges.

[Karpe 20] build an trade-execution algorithm using AI

that learns in the artificial market on AIBIDES. An artifi-

cial market model for investigating a trade-execution al-

gorithm should replicate stylized facts of high-frequency

micro structures like an order book because the perfor-

mance of trade-execution algorithm would depend on the

∗2 https://ai-finance.org/
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structures. [Vyetrenko 20] investigated whether such mod-

els could replicate the stylized facts of the micro structure

and indicated many problems.

[Li 20,Coletta 21,Hirano 21b,Hirano 22c,Kolm 22] built

generators of realistic stock market order streams that are

learning actual data of orders. [Coletta 21] investigated

market impacts of an trade-execution algorithm using an

artificial market model based on ABIDES including only

two agents the trade-execution algorithm agent and realistic

order streams generator agent that uses generative adver-

sarial networks (GANs), a kind of deep learnings. [Hirano

21b] implemented realistic order streams generator agent

only focused on the high-frequency-trader market-making

(HFT-MM) strategy. It is possible that fixing strategy will

lead to decrease fitting ability on an in-sample but to in-

crease generalization ability on an out-sample.

[Coletta 22] proposed to learn a unique “world” agent

from historical data. It was intended to emulate the over-

all trader population, without the need of making assump-

tions about individual market agent strategies. They imple-

mented their world agent simulator models as a Conditional

Generative Adversarial Network (CGAN), as well as a mix-

ture of parametric distributions, and they compared their

models against previous work.

We can say these are a new approach of an artificial mar-

ket model. Actually, because the model cannot start a sim-

ulation without actual order data not only when the model

learns but also when the model simulate on an out sam-

ple, the models are not suitable to investigate new rules

and regulations that have never implemented before. And,

overtraining and overtraining for financial market data that

is lacking principle of the uniformity of nature are worried.

However, it is very large merit that the models can generate

realistic order flows without assuming any agent strategies

and are suitable to test new automated high speed or high

frequency strategies.

5. Who responsible when AIs perform
illegal trades

Numerous studies, e.g., [Scopino 16,Azzutti 21] have dis-

cussed the question of who should be held responsible when

AI accidentally performs illegal actions. In the financial

sector specifically, it is necessary to address AIs that ma-

nipulate markets. Market manipulation refers to traders

artificially increasing or decreasing market prices for profit.

Such a practice is prohibited in many countries as it leads

to unfair trades.

[Scopino 16] indicated that the developer who has no

intention of manipulating a market should not be held re-

sponsible when his/her AI trader manipulates a market at

its own discretion, according to the present regulations of

the United States. This means that even though market

prices are manipulated, no one is held responsible. This

situation presents difficulties in maintaining the integrity

of the market.

[Azzutti 21] argued that autonomous algorithmic traders

may involve significant risks to market integrity, indepen-

dent from their human experts, thanks to self-learning ca-

pabilities offered by state-of-the-art and innovative machine

learning methods. We conclude by addressing the short-

comings of the present legal framework and develop a num-

ber of guiding principles to assist legal and policy reform in

the spirit of promoting and safeguarding market integrity

and safety. They concluded by addressing the shortcom-

ings of the present legal framework and develop a number

of guiding principles to assist legal and policy reform in the

spirit of promoting and safeguarding market integrity and

safety.

[Mizuta 20b,Mizuta 22a] constructed an AI trader using

a genetic algorithm that learns in an artificial market sim-

ulation. Then he investigated whether the AI trader could

discover how to manipulate a market through its learning

even though a user of an AI trader had no intention of

building such a capability into it.

The results showed that the AI trader discovered how

to manipulate a market as an optimal investment strategy.

This indicates that even though the developer may have no

intention of market manipulation, an AI trader can discover

how to do so as an optimal investment strategy in an artifi-

cial market simulation in which it automatically learns the

impact of its trades on market prices. However, the results

also indicates the possibility that an AI trader cannot dis-

cover how to manipulate a market manipulation when the

learning employs backtesting in which there are no impact

on market prices.

The results suggest the need for regulation, such as obli-

gating AI developers to prevent AIs from performing mar-

ket manipulation. Another suggestion is that developers

should limit trades performed by AI to avoid impacting

market prices.

Disclaimer
Note that the opinions contained herein are solely those of the

authors and do not necessarily reflect those of SPARX Asset Man-
agement Co., Ltd.
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