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Many macroeconomic study argued macroeconomic models should be aggregated by micro processes models
(“micro-foundation”) and many micro-founded macroeconomic models were built. On the other hand, there are
many models for price variation of a risk asset, which is macro phenomena, however, there are few studies for
micro-foundation of such models. In this study we tried micro-foundation of an ARCH model using intelligence of
artificial market simulation studies. That is we tried to clarify which micro processes determine each coefficient of
an ARCH model. Then, we showed that the dispersion of investors’ estimated prices is larger or the orders by the
buy-sell imbalance taking liquidity are more, the volatility is larger. And we showed that the ration of the normal
investors taking liquidity to the noise traders providing liquidity is higher or the measure of risk aversion of the
normal investors is lower, the magnitude of volatility clustering is larger.

1. Introduction

Many macroeconomic study argued macroeconomic mod-

els should be aggregated by micro processes models (“micro-

foundation”)∗1, and many micro-founded macroeconomic

models were built. On the other hand, there are many

models for price variation of a risk asset, which is macro

phenomena, such as ARCH model [Engle 82] and GARCH

model [Bollerslev 86], however, there are few studies for

micro-foundation of such models than macroeconomic mod-

els.

On the other hand, there are many previous study using

artificial market simulation models, a kind of multi-agent

models, which simulate macro processes such as investors

and order matching on a computer. Artificial market stud-

ies observe macro phenomena such as price variations as a

result of the modeled macro processes∗2.

Not only academies but also financial regulators and

stock exchanges are recently interested in multi-agent sim-

ulations such artificial market models to investigate regula-

tions and rules of financial markets. Indeed, the Science ar-

ticle by Battiston et al. [Battiston 16] described that ‘since

the 2008 crisis, there has been increasing interest in using

ideas from complexity theory (using network models, multi-

agent models, and so on) to make sense of economic and

financial markets’. Actually, some artificial market studies

recently contributed to discussion what financial regulations

and rules should be∗3.

Artificial market models only modelize the micro pro-

cesses and observe macro phenomena, therefore, artificial

market models are fully micro-founded models. So, arti-

ficial market models have been gaining intelligence micro-

macro interaction mechanisms such as what micro processes
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∗1 [Lucas 76] is very famous example.
∗2 [LeBaron 06,Chen 12,Cristelli 14,Mizuta 16a] are excellent

reviews.
∗3 for example, tick size [Mizuta 13], speed of order match-

ing systems on financial exchanges [Mizuta 15a], short selling
regulation [Mizuta 16b] and usage rate of dark pools [Mizuta
15b].

amplify price variations.

Then in this study we try micro-foundation of the

ARCH(1) model [Engle 82] using intelligence of artificial

market simulation studies. That is we try to clarify which

micro processes determine each coefficient of the ARCH(1)

model.

2. Model

An ARCH(1) model [Engle 82] with an average return is

zero is finally derived,

rt = σtϵt
σ2
t = a0 + a1r

2
t−1.

(1)

Where rt is a log return, ϵt is a stochastic variable obeying

a standard normal distribution, and a0, a1 are constants. a0

indicates a magnitude of a volatility (a degree of variation

of a market price series) and a1 indicates a magnitude of

a volatility clustering (a large volatility tend to maintain a

large for a while) [Mandelbrot 63]. When a1 = 0, the model

indicates the case without a volatility clustering. Therefore,

micro processes determining a0 are cause of an ever-present

volatility, and micro processes determining a1 are cause of

an additional volatility by the volatility clustering.

Next, we build a macro model aggregated by micro pro-

cess discovered by the artificial market studies, and we com-

pare the model with Eq.(1).

There are many artificial market models adopting a pric-

ing model which determines a price variation by buy-sell

order imbalance∗4. Even though they adopt such simple

pricing model, it is well known that they can replicate statis-

tics of price variations in real financial markets. For exam-

ple, [Palmer 94] defined rt = η(Ab
t − As

t ) where rt, A
b
t and

As
t are a return from time t− 1 to t, an amount of buy and

sell orders respectively. η is some constant, and [Palmer 94]

did not show that what micro processes in real markets de-

termine η. [Mizuta 12] tried to clarify which micro processes

determine η and obtained,

rt = ρ
Ab

t −As
t

Ab
t +As

t

. (2)

∗4 For examples, [Arthur 91,Palmer 94,Arthur 97,Lux 99].



Where ρ is proportional to a dispersion of investors’ esti-

mated prices. In short, the dispersion is larger, the volatility

is larger. We explain details how they obtain Eq.(2) in the

Appendix.

At first, we discuss the case only with noise traders. We

assume,

Ab
t =

1
2
S + 1

2
kSϵt,

As
t = 1

2
S − 1

2
kSϵt.

(3)

Where S and k are constants. The first term describes or-

ders that noise traders always make and the second term

describes the buy-sell order imbalance. k describes the

amount of order by the imbalance per the amount of ever-

present orders. Therefore, k means how much liquidity the

orders by the imbalance take, and k is larger, the liquidity

is lower.

To substitute Eq.(2) for Eq.(3) we obtain,

rt = ρkϵt. (4)

To compare Eq.(1) with this we obtain,

σ2
t = ρ2k2 = a0. (5)

This shows the case with a1 = 0. As I mentioned micro pro-

cesses determining a0 are cause of an ever-present volatil-

ity, and micro processes determining a1 are cause of an

additional volatility by the volatility clustering. Therefore,

the noise traders only generate the ever-present volatility,

and do no generate the volatility clustering. The degree of

volatility is determined by the dispersion of investors’ es-

timated prices(ρ) and the orders by the imbalance taking

liquidity(k).

For examples, an asset having high dispersion of esti-

mated prices such as a stock has larger volatility than an as-

set having low dispersion such as a high credit rating bond.

And a stock having low liquidity due to be few waiting or-

ders has larger volatility than a stock having high liquidity

provided by many waiting orders.

Next, we discuss the case not only with the noise traders

but also with the normal investors who determine amount of

orders using a utility function. The normal investors corre-

spond to fundamental and/or technical strategy investors in

real financial markets. Normal investors determine optimal

holdings of shares on their own strategies, and make their

holdings by taking liquidity provided by the noise traders.

Here, we assume,

Ab
t =

1
2
S + 1

2
kS(1 + lUt)ϵt,

As
t = 1

2
S − 1

2
kS(1 + lUt)ϵt.

(6)

lUt is a term added due to the normal investors where l is

a ratio of existing the normal investors and Ut is a utility

function determining amount of orders. l means a ratio of

investors taking liquidity to traders providing liquidity, and

l is larger, the liquidity is lower. Here, we assume a constant

absolute risk aversion (CARA) model∗5 as Ut. Therefore we

∗5 [Pratt 64, Arrow 65] proposed CARA model. [Izumi 96,

Arthur 97, Izumi 99,Yagi 10,Chiarella 09,Gsell 09] and so on
used CARA model for investors to determine amount of or-
ders. [Mizuta 12] showed that CARA model play an important
role to replicate the volatility clustering.

obtain,

Ut ∝
ret
α

(7)

Where ret is a normal investors’ estimated prices, α is a

measure of risk aversion. Usually, normal investors estimate

larger return, the price varied larger. Therefore, we assume

that ret is in proportion to r2t−1 and,

Ut =
r2t−1

α
. (8)

To substitute Eq.(2) for Eq.(6) and Eq.(8) we obtain,

rt = ρk
(
1 +

l

α
r2t−1

)
ϵt. (9)

Furthermore we assume r4t−1 ≪ 1. Comparing Eq.(1) with

this we obtain,

σ2
t = ρ2k2 + 2ρ2k2 l

α
r2t−1, (10)

and,

a0 = ρ2k2,

a1 = 2ρ2k2 l
α
.

(11)

a0 is exactly same with the case without the normal in-

vestors. As we mentioned a1 indicates a magnitude of the

volatility clustering, and the magnitude of the volatility

clustering are determined not only by ρ and k same as the

ever-present volatility(a0) but also by the ratio of existing

the normal investors(l) and the measure of risk aversion of

the normal investors(α).

For examples, the ration of the normal investors taking

liquidity to the noise traders providing liquidity is higher,

the magnitude of volatility clustering is larger. And, the

measure of risk aversion of the normal investors is lower,

in short investors make risk-taking trades more, the magni-

tude of volatility clustering is larger. On the other hand, the

normal investors do not affect the ever-present volatility.

3. Conclusion and Future Work

In this study we tried micro-foundation of the ARCH(1)

model [Engle 82] using intelligence of artificial market sim-

ulation studies. That is we tried to clarify which micro pro-

cesses determine each coefficient of the ARCH(1) model.

Then we obtained,

σ2
t = ρ2k2 + 2ρ2k2 l

α
r2t−1. (12)

The dispersion of investors’ estimated prices(ρ) is larger

or the orders by the buy-sell imbalance taking liquidity(k)

is larger, the volatility is larger. The ration of the nor-

mal investors taking liquidity to the noise traders providing

liquidity(l) is higher or the measure of risk aversion of the

normal investors(α) is lower, the magnitude of volatility

clustering is larger.

There are two future works. One is an empirical study

validating our model. Another one is more detail discussion

of our assumptions that are too strong assumptions for real

financial markets.
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Fig. 1: Distributions of buy and sell orders.
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Fig. 2: Determining a trade price by the call market. Note that the horizontal axis shows prices and the vertical axis shows

cumulative amount of orders.

Appendix

Here, we introduce the derivation of Eq.(2) by [Mizuta

12]. They assumed there are enough buying investors and

selling investors. They assumed that investors’ buy and sell

order prices(log prices) pt at time t are a normal distribu-

tion which average is pt−1 and standard deviation is ρ́ as

Fig.1. The dispersion of order prices (ρ́) is generated by a

dispersion of investors’ estimated prices. The distributions

of buy and sell orders are same shape, however, amounts of

orders that correspond to the areas of distributions are not

equal. They defined the areas of buy and sell order distri-

butions as Ab
t and As

t . They employed a call auction as a

pricing mechanism in which a trade price (market price) is

determined at a balance of supply and demand. As Fig.2

shows, the market price is determined at an intersection

of the demand curve made by the buy orders distribution

and the supply curve made by the sell orders distribution∗6.

The supply curve Bs
t (pt) is a cumulative amount of orders

less than some price pt. Therefore Bs
t (pt) is integrated sell

∗6 Note that in Fig.2 the horizontal axis shows prices and the
vertical axis shows cumulative amount of orders.

order distribution from the cheapest price to pt, and then

they obtained,

Bs
t (pt) =

As
t

2

[
1 + erf

(
pt − pt−1√

2ρ́2

)]
. (13)

Where erf is the error function and defined as,

erf(x) =
2√
π

∫ x

0

e−t2dt. (14)

The demand curve Bb
t (pt) is integrated buy order distribu-

tion from pt to the highest price and then they obtained,

Bb
t (pt) = Ab

t −
Ab

t

2

[
1 + erf

(
pt − pt−1√

2ρ́2

)]
. (15)

As the left side of Fig. 2 shows, in the case of As
t = Ab

t

the market price pt is determined as pt−1, and the market

price is not changed. On the other hand, as the right side

of Fig. 2 shows, in the case of As
t ̸= Ab

t the market price

is not pt. In short, due to the imbalance of buy-sell orders
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the market price determined as a different price from the

average of investors’ estimated price(pt−1).

Here, from Bs
t (pt) = Bb

t (pt) they obtained pt

pt − pt−1 = rt =
√

2ρ́2erf−1(Z). (16)

Where rt is log return, erf−1 is the inverse function of the

error function and

Z ≡ Ab
t −As

t

Ab
t +As

t

, (17)

where Z is always satisfied,

|Z| < 1. (18)

Here they assumed Z ≪ 1 and then they could Maclaurin

expand erf−1(z) by the first order term (there is no second

order term),

rt =

√
π

2
ρ́Z. (19)

Furthermore, they defined ρ =
√

π/2ρ́ and restored Z, fi-

nally they obtained,

rt = ρ
Ab

t −As
t

Ab
t +As

t

. (20)

This equation is exactly Eq.(2).

Disclaimer
Note that the opinions contained herein are solely those of the

authors and do not necessarily reflect those of SPARX Asset Man-
agement Co., Ltd.
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