Investigation of Relationship between Tick Size and Trading Volume of Markets using Artificial Market Simulations

Takanobu MIZUTA* SPARX Asset Management Co. Ltd. The University of Tokyo
Satoshi Hayakawa Tokyo Stock Exchange, Inc.
Kiyoshi IZUMI The University of Tokyo CREST, JST
Shinobu YOSHIMURA University of Tokyo
This material was compiled based on the results of research and studies by directors, officers, and/or employees of Japan Exchange Group, Inc., its subsidiaries, and affiliates (hereafter collectively “the JPX group”) with the intention of seeking comments from a wide range of persons from academia, research institutions, and market users. The views and opinions in this material are the writer's own and do not constitute the official view of the JPX group. This material was prepared solely for the purpose of providing information, and was not intended to solicit investment or recommend specific issues or securities companies. The JPX group shall not be responsible or liable for any damages or losses arising from use of this material. This English translation is intended for reference purposes only. In cases where any differences occur between the English version and its Japanese original, the Japanese version shall prevail. This translation includes different values on figures and tables from the Japanese original because methods of analysis and/or calculation are different. This translation do not includes some paragraphs which Japanese original includes. This translation is subject to change without notice. The JPX group shall accept no responsibility or liability for damages or losses caused by any error, inaccuracy, misunderstanding, or changes with regard to this translation.
Mechanism of Moving Share

Artificial Market Model
(Multi-Agent Simulation)

Competition Factors

Tick Size

Difficult to Change

Data: 2012
TSE and PTS

Empirical Analysis

Compare

Condition Not to Move Share

\(\Delta P_B > \Delta P_A \) or \(\bar{\sigma} > \Delta P_A \)

\(\bar{\sigma} \) depend on \(\Delta P \)
What is Tick Size?

Here, we define Tick Size $\Delta P = \text{Minimum Increment} / \text{Price}$

Difference of 1% Return is Serious Problem for some Investors
⇒ They prefer Stock Market has Smaller Tick Size ΔP
Mechanism of Moving Share

Artificial Market Model
(Multi-Agent Simulation)

Tick Size

Competition Factors

Verification

Competition between Stock Markets

Difficult to Change

Condition Not to Move Share

depend on \(\Delta P \) Moving Share

\[\Delta P_B > \Delta P_A \quad \text{or} \quad \sigma > \Delta P_A \]

Compare

Empirical Analysis

Data: 2012 TSE and PTS

\(\sigma_t \)
Chiarella et. al. [2009]

- Continuous Double Auction
- Agent model is Simple

heterogeneous 1000 agents

Expected Return

\[
 r_{e,j}^t = \frac{1}{\sum_{i=1}^3 w_{i,j}} \left(w_{1,j} \log \frac{P_f}{P_{t-1}} + w_{2,j} r_{h,j}^{t-1} + w_{3,j} \xi_j^t \right)
\]

- **Fundamental**
- **Technical**
- **noise**

Replicate Micro Structures

- Trade number, Cancel rate, 1 day Volatility, and so on.

Simulation Time ⇔ Real Time

convertible

We interested in how long do markets need get shares.
Terms of Fundamental Strategy, Technical Strategy

Fundamental Strategy Term
- Fundamental Price > Market Price ⇒ expects + return
- Fundamental Price < Market Price ⇒ expects - return

Technical Strategy Term
- Historical Return > 0 ⇒ expects + return
- Historical Return < 0 ⇒ expects - return
To Stabilize simulation for continuous double mechanism, Order Prices must be covered widely in Order Book.
Agent Model Parameters

- **j**: agent number (1000 agents) ordering in number order
- **t**: tick time

Expected Return

\[
 r_{e,j}^t = \frac{1}{\sum_{i=1}^{3} w_{i,j}} \left(w_{1,j} \log \frac{P_f}{P^{t-1}} + w_{2,j} r_{h,j}^{t-1} + w_{3,j} \epsilon_j^t \right)
\]

Parameters for agents

- \(w_{i,j} \) and \(\tau_j \)
- Random of Uniform Distribution
 - \(w_{i,j} \)
 - \(i=1,3: 0 \sim 1 \)
 - \(i=2: 0 \sim 10 \)
 - \(\tau_j \)
 - \(0 \sim 10000 \)

Fundamental

- **Fundamental Price**
 - \(P_f \)
 - \(10000 = \text{constant} \)

Technical

- **Historical Return**
 - \(r_{h,j}^t = \log(P^t / P^{t-\tau_j}) \)

- **Random Price Noise**
 - \(\epsilon_j^t \)
 - Random of Normal Distribution
 - Average=0
 - \(\sigma=3\% \)

Expected Price

\[
 P_{e,j}^t = P^{t-1} \exp(r_{e,j}^t)
\]
Market Order

- Market Order: Choose the market list best price
- Limit Order: Allocate on basis of Historical Trading Volume Share of each market

Agents

- Market A
 - Initial Trading Volume Share: 90%
 - Tick Size: Large

- Market B
 - Initial Trading Volume Share: 10%
 - Tick Size: Small
Market Selection Model (example)

<table>
<thead>
<tr>
<th>Market A</th>
<th>Market B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sell</td>
<td>Sell</td>
</tr>
<tr>
<td>84</td>
<td>1</td>
</tr>
<tr>
<td>176</td>
<td>99.2</td>
</tr>
<tr>
<td>99</td>
<td>99.0</td>
</tr>
<tr>
<td>98</td>
<td>98.8</td>
</tr>
<tr>
<td>Price</td>
<td>Price</td>
</tr>
<tr>
<td>101</td>
<td>99.1</td>
</tr>
<tr>
<td>100</td>
<td>99.0</td>
</tr>
<tr>
<td>204</td>
<td>3</td>
</tr>
<tr>
<td>Buy</td>
<td>Buy</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Buy ¥98: Allocate on basis of Historical Trading Volume Share of each market
2. Buy ¥99.1: Market B
 \uparrow can buy ¥99.1 at Market B, immediately
3. Buy ¥100: Market B
 \uparrow can buy ¥99.1 at Market B, best price

Market B will take Trading Volume share because of (2), (3)
Allocate on basis of Historical Trading Volume Share

\[Wa : \text{Probability an agent choose Market A} \]

\[Ta, Tb : \text{Trading Volume of Market A or B within last } t_{AB} \]

\[t_{AB} = 5 \text{ days} \]

\[Wa = \frac{Ta}{Ta + Tb} \]
Competition between Stock Markets

Mechanism of Moving Share

Artificial Market Model
(Multi-Agent Simulation)

Tick Size
Difficult to Change

Competition Factors
Verification

Condition Not to Move Share

\[\Delta P_B > \Delta P_A \quad \text{or} \quad \bar{\sigma} > \Delta P_A \]

\[\sigma_t \]

depend on \(\Delta P \rightarrow \) Moving Share

Compare

Empirical Analysis

Data: 2012 TSE and PTS
Stylized Facts

<table>
<thead>
<tr>
<th>tick size(%)</th>
<th>0.0001%</th>
<th>0.001%</th>
<th>0.01%</th>
<th>0.1%</th>
<th>1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>trade rate</td>
<td>23.5%</td>
<td>23.5%</td>
<td>23.4%</td>
<td>23.1%</td>
<td>22.1%</td>
</tr>
<tr>
<td>cancel rate</td>
<td>26.2%</td>
<td>26.2%</td>
<td>26.3%</td>
<td>26.6%</td>
<td>27.6%</td>
</tr>
<tr>
<td>number of trades / 1 day</td>
<td>6,361</td>
<td>6,358</td>
<td>6,345</td>
<td>6,279</td>
<td>6,081</td>
</tr>
<tr>
<td>standard deviations for 1 tick</td>
<td>0.05%</td>
<td>0.05%</td>
<td>0.05%</td>
<td>0.06%</td>
<td>0.16%</td>
</tr>
<tr>
<td>standard deviations for 1 day (20000 ticks)</td>
<td>0.59%</td>
<td>0.56%</td>
<td>0.57%</td>
<td>0.57%</td>
<td>1.15%</td>
</tr>
<tr>
<td>kurtosis</td>
<td>1.50</td>
<td>1.48</td>
<td>1.45</td>
<td>1.10</td>
<td>1.81</td>
</tr>
</tbody>
</table>

Autocorrelation coefficient for square return:

<table>
<thead>
<tr>
<th>lag</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.229</td>
<td>0.141</td>
<td>0.109</td>
<td>0.091</td>
<td>0.078</td>
</tr>
<tr>
<td></td>
<td>0.228</td>
<td>0.141</td>
<td>0.108</td>
<td>0.091</td>
<td>0.078</td>
</tr>
<tr>
<td></td>
<td>0.210</td>
<td>0.120</td>
<td>0.090</td>
<td>0.075</td>
<td>0.064</td>
</tr>
<tr>
<td></td>
<td>0.025</td>
<td>0.013</td>
<td>0.008</td>
<td>0.006</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Replicate Fat-Tail and Volatility-Clustering

\[\bar{\sigma}_t = 0.05\% \]

Volatility at tick size small

+ Replicate Micro Structures (Original)

Trade rate, Cancel rate, 1 tick and 1 day volatility

Simulation Time ⇔ Real Time convertible

We interested in how long do markets need get shares.
Mechanism of Moving Share

Artificial Market Model
(Multi-Agent Simulation)

Competition Factors
Verification

Tick Size
Difficult to Change

Condition Not to Move Share

\[\Delta P_B > \Delta P_A \text{ or } \bar{\sigma} > \Delta P_A \]

\[\bar{\sigma}_t \text{ depend on } \Delta P \rightarrow \text{Moving Share} \]

Competition between Stock Markets

Empirical Analysis

Data: 2012 TSE and PTS

Mechanism of Moving Share

Compare

\[\Delta P_B > \Delta P_A \text{ or } \bar{\sigma} > \Delta P_A \]
Tick Size of Market B $\Delta PB=0.01\%$, Tick Size is not small

Tick Size of Market A, ΔPA is larger, Market A is taken trading volume share faster
Execution Rate of Market B was slightly bigger than that of Market A. Because of the difference, Market B took the share
Market B can hardly take the share in spite that \(\Delta PA \) is very larger than \(\Delta PB \)
Tick Size Condition Not to Move Share

<table>
<thead>
<tr>
<th>Trading share of Market A at 500 days</th>
<th>ΔP_B</th>
<th>0.0001%</th>
<th>0.0002%</th>
<th>0.0005%</th>
<th>0.001%</th>
<th>0.002%</th>
<th>0.005%</th>
<th>0.01%</th>
<th>0.02%</th>
<th>0.05%</th>
<th>0.1%</th>
<th>0.2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0001%</td>
<td></td>
<td>90%</td>
<td>90%</td>
<td>91%</td>
<td>91%</td>
<td>92%</td>
<td>94%</td>
<td>97%</td>
<td>99%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.0002%</td>
<td></td>
<td>90%</td>
<td>90%</td>
<td>90%</td>
<td>91%</td>
<td>91%</td>
<td>94%</td>
<td>97%</td>
<td>99%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.0005%</td>
<td></td>
<td>89%</td>
<td>90%</td>
<td>91%</td>
<td>91%</td>
<td>92%</td>
<td>94%</td>
<td>96%</td>
<td>99%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.001%</td>
<td></td>
<td>89%</td>
<td>89%</td>
<td>90%</td>
<td>90%</td>
<td>92%</td>
<td>94%</td>
<td>97%</td>
<td>99%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.002%</td>
<td></td>
<td>87%</td>
<td>88%</td>
<td>89%</td>
<td>89%</td>
<td>91%</td>
<td>93%</td>
<td>97%</td>
<td>99%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.005%</td>
<td></td>
<td>84%</td>
<td>85%</td>
<td>85%</td>
<td>84%</td>
<td>87%</td>
<td>92%</td>
<td>96%</td>
<td>99%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.01%</td>
<td></td>
<td>75%</td>
<td>76%</td>
<td>76%</td>
<td>77%</td>
<td>78%</td>
<td>83%</td>
<td>92%</td>
<td>98%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.02%</td>
<td></td>
<td>53%</td>
<td>52%</td>
<td>53%</td>
<td>54%</td>
<td>54%</td>
<td>59%</td>
<td>70%</td>
<td>93%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.05%</td>
<td></td>
<td>5%</td>
<td>5%</td>
<td>4%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>6%</td>
<td>23%</td>
<td>93%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.1%</td>
<td></td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>94%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.2%</td>
<td></td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>96%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Condition Not to Move Share

- $\Delta P_B > \Delta P_A$
- $\bar{\sigma} > \Delta P_A$

$\bar{\sigma}_t = 0.05\%$
Competition between Stock Markets

Mechanism of Moving Share

Artificial Market Model
(Multi-Agent Simulation)

Tick Size

Difficult to Change

Competition Factors
Verification

Condition Not to Move Share

\[\Delta P_B > \Delta P_A \quad \text{or} \quad \sigma > \Delta P_A \]

\(\sigma \) depend on \(\Delta P \)

Moving Share

Mechanism of Moving Share

Compare

Empirical Analysis

Data: 2012 TSE and PTS
Relationship between σ_t and Share (ΔPB is enough small)

When σ_t depends on ΔPA, Market A is taken share very Rapidly
\(\sigma_t < \Delta P_A \)

unable trading in Market A

\(\rightarrow \) many trading in Market B

\(\Rightarrow \) trading share moving to Market B

\(\sigma_t > \Delta P_A \)

needless Market B

\(\Rightarrow \) trading share not moving
Mechanism of Moving Share

Artificial Market Model
(Multi-Agent Simulation)

Competition between Stock Markets

Factors

Verification

Tick Size

Difficult to Change

Condition Not to Move Share

\[\Delta P_B > \Delta P_A \quad \text{or} \quad \frac{1}{10} > \Delta P_A \]

\[\sigma_t \text{ depend on } \Delta P \to \text{Moving Share} \]

Compare

Empirical Analysis

Data: 2012 TSE and PTS

Mechanism of Moving Share
Data

Data Period: All business days in calendar year 2012
Universe: 439 stocks
 Selected by TOPIX 500 index whole data period
 they had same tick size for every month ends
 they were traded every business days at least once

Horizontal Axis: Tick Size of TSE ΔP for each stock
 Δ: standard deviation of 10 seconds return for each stock, σ_t
 ●: trading volume share in PTS for each stock

Summarize Markets:

- **Traditional Stock Exchanges:**
 Tokyo Stock Exchange, Osaka SE,
 Nagoya, Fukuoka, Sapporo, and JASDAQ

- **PTS (Proprietary Trading System):**
 Japan Next PTS J-Market, Japan Next PTS X-Market,
 and Chi-X Japan PTS
Empirical Result

Right Side, Volatility σ_t depends on Tick Size ΔP, Tokyo Stock Exchange is taken share more.

(right vertical axis is reversed)
Mechanism of Moving Share

Artificial Market Model (Multi-Agent Simulation)

Competition Factors

Verification

Difficult to Change

Condition Not to Move Share

\[\Delta P_B > \Delta P_A \] or \[\bar{\sigma} > \Delta P_A \]

\(\bar{\sigma} \) depend on \(\Delta P \)

Moving Share

Mechanism of Moving Share

Compare

Empirical Analysis

Data: 2012 TSE and PTS

Summary
Appendix
Definition of Market/Limit order

In this study

A little difference from actual market

All agents decide an order price

<table>
<thead>
<tr>
<th>sell</th>
<th>order book</th>
<th>buy</th>
</tr>
</thead>
<tbody>
<tr>
<td>sell</td>
<td>price</td>
<td>buy</td>
</tr>
<tr>
<td>84</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>77</td>
<td></td>
</tr>
</tbody>
</table>

Exist matching order
Order executed immediately

No matching order
Order not executed immediately

Agents decide an order price,
if exist matching order, market order else limit order