Simulation Study on Effects of Tick Size Difference in Stock Markets Competition

Takanobu Mizuta1,2, Satoshi Hayakawa3, Kiyoshi Izumi2,4, and Shinobu Yoshimura2

1 SPARX Asset Management Co. Ltd.
2 School of Engineering, The University of Tokyo
3 Tokyo Stock Exchange, Inc.
4 CREST & PRESTO, JST

Abstract. We investigated competition, in terms of taking market share of trading volume, between two artificial financial markets that have exactly the same specifications except tick size, i.e., the minimum units of a price change per market price, and initial trading volume using multi-agent simulations. We found that market share of the trading volume of a market that adopts a tick size larger than σ_t (standard deviation of tick by tick return when tick size is small enough) is taken by another market that adopts a tick size smaller, and market share of the trading volume of a market that adopts a tick size smaller than approximately $1/10\sigma_t$ is rarely taken by another market. We also found that agent allocation rules of limit orders affect the changing speed of trading volume. We compared these simulation results with empirical data of the Tokyo Stock Exchange. We argue that these investigations will encourage discussion about adequate tick sizes that markets should adopt.

Keywords: Stock Market Competition, Tick Size, Artificial Market, Multi Agent Simulation

1 Introduction

Recently, the number of stock markets that make full use of IT and achieve low-cost operations is increasing, especially in the United States and Europe. Their market shares of trading volume have caught up with those of traditional stock exchanges. Therefore, each stock is traded at many stock markets at once. Whether such fragmentation makes markets more efficient has been debated\cite{1, 2}. There are many factors that cause the taking of market share of trading volume between actual markets, such as the minimum unit of a price change per market price (tick size), speed of trading systems, length of trading hours, stability of trading systems, safety of clearing, and variety of order types. It is said that the smallness of tick size is one of the most important factors to compete with other markets.

Because many factors result in the taking market share of trading volume of one actual market by another, an empirical study cannot isolate the relationship
between tick size and market share of trading volume. Therefore, it is difficult
to discuss the effect of tick size from only the results of empirical studies. An
artificial market, which is a type of agent-based simulation, will help us deter-
mine effects on institutions and regulations in financial markets. Many studies
have investigated the effect on several institutions and regulations using artifi-
cial market simulations [3–5]. No simulation studies, however, were focused on
investigating the effect of the relationship between tick size and market share of
trading volume on stock markets using an artificial market model.

In this study, we investigated competition, in terms of taking market share
of trading volume, between two artificial financial markets that have exactly
the same specifications except of tick size and initial trading volume using an
artificial market model. We found that market share of the trading volume of a
market that adopts a tick size larger than σ_t (standard deviation of tick by tick
return when tick size is enough small) is taken by another market that adopts
a tick size smaller than that of the market, and market share of the trading
volume of a market that adopts a tick size smaller than approximately $1/10\sigma_t$
is rarely taken by another market. We also found that agent allocation rules
of limit orders affect the changing speed of trading volume. We compared these
simulation results with empirical data obtained from the Tokyo Stock Exchange.
The paper is structured as follows. In section 2, we explain details of our artificial
market model. In section 3, we show simulations results. In section 4, we explain
the results of an empirical study on the Tokyo Stock Exchange data. We conclude
the paper in Section 5.

2 Artificial Market Model

We built a simple artificial market model on the basis of the models developed
by Mizuta et al. [4] and Chiarella et al. [6]. The model treats only one risk
asset and one non-risk asset (cash) and adopts a continuous double auction\(^1\) to
determine the market price of a risk asset. The number of agents is n. First, at
time $t = 1$, agent 1 orders to buy or sell the risk asset; then at $t = 2$ agent 2
orders to buy or sell. At $t = 3, 4, \ldots, n$, agents $3, 4, \ldots, n$ respectively order to buy
or sell. At $t = n + 1$, going back to the first agent, agent 1 orders to buy or sell,
and at $t = n + 2, n + 3, \ldots, n + n$, agents $2, 3, \ldots, n$ respectively order to buy or sell,
and this cycle is repeated. Note that t passes even if no deals have occurred.
An agent j determines an order price and buys or sells by the following process.
Agents use a combination of the fundamental value and technical rules to form
expectations on a risk asset return. The expected return of agent j is

$$r_{e,j}^t = \frac{1}{\sum_i w_{i,j}} \left(w_{1,j} \log \frac{P^t_j}{P^t} + w_{2,j} r_{h,j}^t + w_{3,j} \epsilon_j^t \right), \tag{1}$$

\(^1\) A continuous double auction is an auction mechanism where multiple buyers and
sellers compete to buy and sell financial assets in the market and where transactions
can occur at any time whenever an offer to buy and an offer to sell match [7].
where \(w_{i,j} \) is the weight of term \(i \) of agent \(j \), which is independently determined by random variables of uniform distribution inside the interval \((0, w_{i,max})\) at the start of the simulation for each agent. \(P_f \) is a fundamental value that is constant, \(P_t \) is the market price of the risk asset at time \(t \). (When dealing does not occur at \(t \), \(P_t \) remains at the last market price \(P_{t-1} \), and at \(t = 1 \), \(P_t = P_f \)), \(\epsilon_t^j \) is noise determined by random variables of normal distribution with an average 0 and variance \(\sigma_\epsilon \), \(r_{h,j}^t \) is a historical price return inside an agent’s time interval \(\tau_j \), and \(r_{h,j}^t = \log (P_t/P_{\tau_j}) \) in which \(\tau_j \) is independently determined by random variables of uniform distribution inside the interval \((1, \tau_{max})\) at the start of the simulation for each agent. The first term of Eq. (1) represents a fundamental strategy: an agent expects a positive return when the market price is lower than the fundamental value and vice versa. The second term of Eq. (1) represents a technical strategy: an agent expects a positive return when the historical market return is positive and vice versa. After the expected return has been determined, the expected price is
\[
P_{t,e,j} = P_t \exp (r_{t,e,j}^t).
\] (2)

We modeled an order price \(P_{t,o,j} \) by random variables of normal distribution in an average \(P_{t,o,j}^\mu \), a standard deviation \(P_{t,o,j}^\sigma \), where \(P_{t,o,j}^\sigma \) is a constant. A minimum unit of a price change is \(\Delta P \), and we round off a fraction of less than \(\Delta P \). To buy or sell is determined by the magnitude of the relation between the expected price \(P_{t,e,j} \) and the order price \(P_{t,o,j} \), that is,

When \(P_{t,e,j} > P_{t,o,j} \), the agent orders to buy one share,

When \(P_{t,e,j} < P_{t,o,j} \), the agent orders to sell one share.

Agents always order only one share. Our model adopts a continuous double auction, so when an agent orders to buy (sell), if there is a lower price sell order (a higher price buy order) than the agent’s order, dealing immediately occurs. We call such an order “market order”. If there is not a lower price sell order (a higher price buy order) than the agent’s order, the agent’s order remains in the order book. We call such an order “limit order”. The remaining order is canceled after \(t_c \) from the order time. Agents can short sell freely. The quantity of holding positions is not limited, so agents can take any shares for both long and short positions to infinity.

We investigated the situation in which agents can trade one kind of stock in two stock markets. The two stock markets have exactly the same specifications except minimum unit of a price change, \(\Delta P_A, \Delta P_B \) and initial share of trading volume, \(W_A, W_B \). The agents should decide to which market they order, market A or market B. When the agent order is buy (sell), the agent searches the lowest sell (highest buy) orders of each market. We call these prices “best prices”. When best prices differ between two markets and the order will be a market order in at least one of the markets, the agent orders to buy (sell) in a market in which the best price is better, i.e., lower (higher) in the case of the buy (sell) order. In other cases, i.e., when the best prices are exactly the same or the order will be
a limit order in both markets, the agent orders to buy (sell) in market A with probability \(W_A = \frac{T_A}{T_A + T_B} \), where \(T_A \) is the trading volume of market A within last \(t_{AB} \), calculating span of \(W_A \) and \(T_B \) is that of market B. Therefore, \(W_B = 1 - W_A = \frac{T_B}{T_A + T_B} \) is the probability the agent orders to buy (sell) in market B. Before time reaches \(t_{AB} \), \(W_A \) remains constant at an initial value. To summarize, if the market order and best prices differ, agents order to buy (sell) in the market in which the best price is better than in another market. In other cases, agents order to buy (sell) in markets depending on the market share of trading volume.

Table 1. Stylized facts for various tick sizes

<table>
<thead>
<tr>
<th>tick size(%)</th>
<th>0.0001%</th>
<th>0.001%</th>
<th>0.01%</th>
<th>0.1%</th>
<th>1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>trade rate</td>
<td>23.5%</td>
<td>23.5%</td>
<td>23.4%</td>
<td>23.1%</td>
<td>22.1%</td>
</tr>
<tr>
<td>cancel rate</td>
<td>26.2%</td>
<td>26.2%</td>
<td>26.3%</td>
<td>26.6%</td>
<td>27.6%</td>
</tr>
<tr>
<td>number of trades / 1 day</td>
<td>6.361</td>
<td>6.358</td>
<td>6.345</td>
<td>6.279</td>
<td>6.081</td>
</tr>
<tr>
<td>standard deviations for 1 day (20000 ticks)</td>
<td>0.59%</td>
<td>0.56%</td>
<td>0.57%</td>
<td>0.57%</td>
<td>1.15%</td>
</tr>
<tr>
<td>kurtosis</td>
<td>1.50</td>
<td>1.48</td>
<td>1.45</td>
<td>1.10</td>
<td>1.81</td>
</tr>
</tbody>
</table>

autocorrelation

<table>
<thead>
<tr>
<th>lag</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.229</td>
<td>0.228</td>
<td>0.228</td>
<td>0.210</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>0.241</td>
<td>0.141</td>
<td>0.141</td>
<td>0.120</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>0.109</td>
<td>0.108</td>
<td>0.108</td>
<td>0.090</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>0.091</td>
<td>0.091</td>
<td>0.091</td>
<td>0.075</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>0.078</td>
<td>0.078</td>
<td>0.078</td>
<td>0.064</td>
<td>0.004</td>
<td></td>
</tr>
</tbody>
</table>

Trading share of Market A for various \(\Delta P_A \) (\(\Delta P_B = 0.01\% \))

Fig. 1. Time evolution of market share of trading volume in Market A for various \(\Delta P_A (\Delta P_B = 0.01\%) \)
3 Simulation Results

In this study, we set $n = 1000$, $w_{1,max} = 1$, $w_{2,max} = 10$, $w_{3,max} = 1$, $\tau_{max} = 10000$, $\sigma = 0.06$, $P_f = 30$, $t_c = 20000$, and $P_f = 10000$. We ran simulations to $t = 10000000$.

3.1 Verification of Model

Table I lists statistics for various tick sizes in which there is only one market. All statistics are averages of 100 simulation runs. Tick size is the ratio of the minimum unit of a price change ΔP to the fundamental value P_f. We define 20000 time steps as 1 day because the number of trades within 20000 time steps is almost the same as that in actual markets per day. Trades rates and cancel
rates\(^2\) are similar in actual markets and verify the model. Standard deviations for one day are also similar to those in actual markets and also verify the model. We also found that standard deviations increased with a tick size of 1%.

In many previous artificial market studies, the models were verified in terms of whether they can be used to explain stylized facts such as fat-tail and volatility-clustering\(^3\). Table I also lists the stylized facts in each case. We used returns for about 10 seconds (100 time unit intervals) to calculate the statistical values for the stylized facts\(^4\). In all runs, we found that both kurtosis and autocorrelation coefficients for square returns with several lags were positive, which means that all runs replicate stylized facts. However, only when the tick size was 1%, the autocorrelation coefficients for square returns with several lags were almost zero. We believe the reason is that the standard deviation of returns is almost constant because the tick size is too big and most returns for about 10 seconds will be zero or 1%.

3.2 Time Evolutions of Market Share of Trading Volume

We investigated the transition of market shares of trading volume involving two markets. The two stock markets, markets A and B, had exactly the same

\(^2\) We referred to the statistics of actual markets in [8] and Bloomberg. Trade rate is the ratio of the number of trades to that of all orders + cancels. Cancel rate is the ratio of the number of cancels to that of all orders + cancels.

\(^3\) Excellent reviews are [9, 10]. Fat-tail means that the kurtosis of price returns is positive. There have been empirical studies on fat-tail [11, 12]. Volatility-clustering means that the square returns have positive autocorrelation, and the autocorrelation slowly decays as its time separation becomes larger. There have been empirical studies on volatility-clustering [13, 12, 14].

\(^4\) In this model, time passes by an agent just ordering even if no dealing occurred. Therefore, the returns for one tick (one time) include many zero returns, which will bias statistical values. This is the reason we use returns for about 10 seconds.
specifications except minimum unit of a price change, $\Delta P_A, \Delta P_B$ and initial market share of trading volume, W_A, W_B. We set $t_{AB} = 10000$ (5 days). Figure 1 shows the time evolution of market share of trading volume of market A for various ΔP_A. We set initial $W_A = 0.9$ and $\Delta P_B = 0.01\%$. We found that when ΔP_A was larger, market A took market share of trading volume from market B faster. Figure 2 shows the case in which $\Delta P_B = 0.0001\%$, which is 1/100 compared with that in Figure 1, and ΔP_A also became 1/100. We found that market B could not take market share in spite of the fact that the ratios of ΔP_A to ΔP_B were the same as those in Figure 1. Therefore, competition under too small of tick sizes does not affect the taking of market share of trading volume. Figure 3 shows the time evolution of market share of trading volume of market A for various t_{AB}, where $\Delta P_A = 0.1\%$ and $\Delta P_B = 0.01\%$. We found that when t_{AB} was shorter, market B took market share of trading volume faster. This means that t_{AB} is an important parameter for the speed of taking market share of trading volume. Figure 4 shows same as Figure 3 when agents order to buy (sell) in markets not depending on market share of trading volume but the share of all orders. The speed of taking trading volume is slower than that in Figure 3. We found that how agents distribute orders to markets affects this speed.

Table 2. Market share of trading volume of Market A at 500 days for various ΔP_A and ΔP_B

<table>
<thead>
<tr>
<th>ΔP_A</th>
<th>0.0001%</th>
<th>0.0002%</th>
<th>0.0005%</th>
<th>0.001%</th>
<th>0.002%</th>
<th>0.005%</th>
<th>0.01%</th>
<th>0.02%</th>
<th>0.05%</th>
<th>0.1%</th>
<th>0.2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0001%</td>
<td>90%</td>
<td>90%</td>
<td>91%</td>
<td>91%</td>
<td>92%</td>
<td>94%</td>
<td>97%</td>
<td>99%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.0002%</td>
<td>89%</td>
<td>90%</td>
<td>90%</td>
<td>91%</td>
<td>91%</td>
<td>92%</td>
<td>94%</td>
<td>95%</td>
<td>99%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.0005%</td>
<td>89%</td>
<td>90%</td>
<td>90%</td>
<td>91%</td>
<td>92%</td>
<td>94%</td>
<td>95%</td>
<td>99%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.001%</td>
<td>88%</td>
<td>89%</td>
<td>88%</td>
<td>88%</td>
<td>91%</td>
<td>93%</td>
<td>96%</td>
<td>99%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.002%</td>
<td>87%</td>
<td>88%</td>
<td>89%</td>
<td>89%</td>
<td>91%</td>
<td>93%</td>
<td>96%</td>
<td>99%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.005%</td>
<td>84%</td>
<td>85%</td>
<td>85%</td>
<td>84%</td>
<td>87%</td>
<td>90%</td>
<td>92%</td>
<td>96%</td>
<td>99%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>0.01%</td>
<td>75%</td>
<td>76%</td>
<td>76%</td>
<td>77%</td>
<td>79%</td>
<td>82%</td>
<td>84%</td>
<td>88%</td>
<td>91%</td>
<td>99%</td>
<td>100%</td>
</tr>
<tr>
<td>0.02%</td>
<td>53%</td>
<td>56%</td>
<td>53%</td>
<td>54%</td>
<td>56%</td>
<td>59%</td>
<td>62%</td>
<td>63%</td>
<td>66%</td>
<td>69%</td>
<td>73%</td>
</tr>
<tr>
<td>0.05%</td>
<td>5%</td>
<td>5%</td>
<td>4%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>0.1%</td>
<td>0%</td>
</tr>
<tr>
<td>0.2%</td>
<td>0%</td>
</tr>
</tbody>
</table>

3.3 Relationship between Tick Size and Taking Market Share

Next, we investigated the relationship between tick size and taking market share of trading volume. Table 2 lists the market share of trading volume of market A at 500 days, W_A for various ΔP_A and ΔP_B where t_{AB} was fixed for 5 days. Market share of trading volume was averaged over 100 simulation runs. Light shading denotes $10\% \leq W_A < 80\%$, and dark shading denotes $W_A < 10\%$. We also drew the following three border lines,

\[
\Delta P_A \leq \Delta P_B \text{ (dashed line)},
\]

\[
\Delta P_A < \sigma t \approx 0.05\% \text{ (double line)},
\]

\[
\Delta P_A < \frac{1}{10} \sigma t \approx 0.005\% \text{ (solid line)},
\]
Table 3. Market share of trading volume of Market A at 500 days for various ΔP_A and t_{AB}

<table>
<thead>
<tr>
<th>ΔP_A</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0001%</td>
<td>91%</td>
<td>89%</td>
<td>90%</td>
<td>90%</td>
<td>90%</td>
<td>90%</td>
</tr>
<tr>
<td>0.0002%</td>
<td>89%</td>
<td>90%</td>
<td>90%</td>
<td>90%</td>
<td>90%</td>
<td>90%</td>
</tr>
<tr>
<td>0.0005%</td>
<td>88%</td>
<td>88%</td>
<td>89%</td>
<td>90%</td>
<td>90%</td>
<td>90%</td>
</tr>
<tr>
<td>0.001%</td>
<td>86%</td>
<td>86%</td>
<td>88%</td>
<td>89%</td>
<td>90%</td>
<td>90%</td>
</tr>
<tr>
<td>0.002%</td>
<td>62%</td>
<td>73%</td>
<td>85%</td>
<td>89%</td>
<td>89%</td>
<td>89%</td>
</tr>
<tr>
<td>0.005%</td>
<td>24%</td>
<td>53%</td>
<td>78%</td>
<td>85%</td>
<td>87%</td>
<td>89%</td>
</tr>
<tr>
<td>0.01%</td>
<td>0%</td>
<td>12%</td>
<td>59%</td>
<td>85%</td>
<td>84%</td>
<td>83%</td>
</tr>
<tr>
<td>0.05%</td>
<td>0%</td>
<td>0%</td>
<td>8%</td>
<td>44%</td>
<td>73%</td>
<td>85%</td>
</tr>
<tr>
<td>0.1%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>10%</td>
<td>52%</td>
<td>80%</td>
</tr>
<tr>
<td>0.2%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>24%</td>
<td>74%</td>
</tr>
</tbody>
</table>

Relationship between ΔP_A, σ_t and Trading share ($\Delta P_B=0.0001$)

Fig. 5. Standard deviation of returns for 1 tick, σ_t and market share of trading volume of Market A at 500 days for various ΔP_A

where σ_t is the standard deviation of return for one tick, which was small enough. We found approximately 0.05% from Table 1. Region Equation (3) satisfies the region above the dashed line in Table 2, and region Equations (4, 5) satisfy the region above the double or solid lines. The region that at least Equation (3) or (5) satisfies is not shading, and market share of trading volume of market A is rarely taken. The region that both Equations (3) and (4) do not satisfy, under the dashed and double lines, is mostly darkened, and market share of trading volume of market A is rapidly taken. In the region above the solid line, Equation (5), market share of trading volume of market A is rarely taken even if ΔP_B is much smaller than ΔP_A, and in the region above the double line, Equation (4), market share of trading volume share is not taken rapidly and does not depend on ΔP_B. This means that when the tick size of market A is smaller than σ_t, market share of trading volume of market A is slowly taken, and when the tick size is smaller than $1/10\sigma_t$, market share of trading volume is rarely taken.
Table 3 lists market share of trading volume of market A at 500 days, W_A for various ΔP_A and t_{AB} where $\Delta P_B = 0.0001\%$. Equation (3) was never satisfied in all regions. We found that when t_{AB} was larger, the taking of market share of trading volume of market A is slower; however, in the region above the solid line, Equation (5), market share of trading volume of market A is rarely taken. This may suggest that market share of trading volume of markets that adopt tick sizes smaller than approximately $1/10\sigma_t$ are rarely taken by other competing markets.

Figure 5 shows the standard deviation of return for one tick, σ_t, and market share of trading volume of market A at 500 days, W_A for various ΔP_A where $\Delta P_B = 0.0001\%$. σ_t and W_A are averages of 100 simulation runs. The left vertical axis and horizontal axis are logarithmic scales. Equation (3) was never satisfied for all ΔP_A in Figure 5. The horizontal dotted line is $\sigma_t = \sigma_t$, and the two dashed lines are $\Delta P_A = 1/10\sigma_t$ and $\Delta P_A = \sigma_t$. On left side of $\Delta P_A = \sigma_t$, σ_t equals σ_t and σ_t does not depend on ΔP_A. This means that the difference in tick size does not affect price formations where tick sizes are smaller than approximately $1/10\sigma_t$. On the other hand, on the right side of $\Delta P_A = \sigma_t$, ΔP_A is larger, σ_t is larger. This implies that the prices normally fluctuate less than ΔP_A; however, price variation less than ΔP_A is not permitted. Therefore, price fluctuations depend on ΔP_A. In this case, market share of trading volume rapidly decrease according to increasing ΔP_A. On the left side of $\Delta P_A = 1/10\sigma_t$, however, the shares are stable. Among $\Delta P_A = 1/10\sigma_t \sim \sigma_t$, the market share slowly decrease according to increasing ΔP_A.

We summarize discussion so far referring Figure 6. When ΔP_A is larger than approximately σ_t (Figure 6 top), if ΔP_B is smaller than ΔP_A, there is a large amount of trading in market B inside ΔP_A. Therefore, market B takes market share of trading volume from market A. On the other hand, when ΔP_A is smaller than approximately $1/10\sigma_t$ (Figure 6 bottom), even if ΔP_B is very small, price fluctuations cross many widths of ΔP_A and sufficient price formations are occur only in market A. Therefore, market B can rarely take market share of trading volume from market A. Among $\Delta P_A = 1/10\sigma_t \sim \sigma_t$, market B slowly takes trading volume from market A.

4 Empirical Analysis

Next, we analyzed empirical data and compared them with the simulation results shown in Figure 5, using Japanese stock market data. The data period included all business days in the 2012 calendar year. A number of stocks analyzed is 439, which were selected by TOPIX 500 over the entire index data period, had the same minimum unit of a price change for every month end and were traded every business day. Figure 7 shows the standard deviations for 10 seconds of each stock, where σ_t (triangles) is the averaged standard deviation of return for 10 minutes

5 TOPIX 500 is a free-float capitalization-weighted index that is calculated based on the 500 most liquid and highly market capitalized domestic common stocks listed on the Tokyo stock exchange first section [15].
except opening prices for every day and ΔP is market share of the trading volume of the Proprietary Trading System (PTS) of each stock (circles) with tick sizes that are minimum unit of a price change divided by averaged prices at the end of every month of the Tokyo Stock Exchange. We used the data from the Tokyo stock exchange to calculate ΔP and σ_t. We used Bloomberg data to calculate the market share or trading volume of the PTS, which is its entire trading volume divided by those of Japanese traditional stock exchanges and PTS, where PTSs are Japan next PTS J-Market, X-Market, and Chi-X Japan PTS, and where Japanese traditional stock exchanges are the Tokyo, Osaka, Nagoya, Fukuoka, and Sapporo stock exchanges and JASDAQ. The right vertical axis is upside down to easily compare with Figure 5. The horizontal dotted line is σ_t = σ_t, and two dashed lines are ΔP = 1/10σ_t and ΔP = σ_t.

On the left side of ΔP = σ_t, σ_t, which equaled σ_t and σ_t, did not much depend on ΔP. On the right side of ΔP = σ_t, ΔP was larger, σ_t was larger. These results are similar to those in Figure 5. The market share of trading volume of PTS deceased along with ΔP for the entire ΔP. This result is similar among ΔP_A = 1/10σ_t ~ ΔP_A = σ_t in Figure 5. On the left side of ΔP = 1/10σ_t, however, we did not argue that shares of PTS are stable such as Figure 5 because there were not enough data. We did found that when ΔP was larger, PTS more

6 Electric trading systems outside stock exchanges are called PTSs in Japan. A PTS is very similar to an Alternative Trading System (ATS) and Electronic Communications Network (ECN) in other countries.
5 Conclusion and Future Study

We investigated competition, in terms of taking market share of trading volume between two artificial financial markets that had exactly the same specifications except tick size and initial trading volume using multi-agents simulations. When the tick size of market A, ΔP_A, was larger than approximately the standard deviation of tick by tick return when tick size was small enough, σ_t (Figure 6 top), if the tick size of market B, ΔP_B, was smaller than ΔP_A, much trading occurred in market B inside ΔP_A. Therefore, market B took market share of the trading volume from market A. On the other hand, when ΔP_A was smaller than approximately $1/10 \sigma_t$ (Figure 6 bottom), even if ΔP_B was very small, price fluctuations cross many widths of ΔP_A and enough price formations occurred only in market A. Therefore, market B could rarely take market share of trading volume from market A. Among $\Delta P_A = 1/10 \sigma_t \sim \sigma_t$, market B slowly took market share of trading-volume from market A. We also compared these simulation results with empirical data from the Tokyo Stock Exchange. We argued that this investigation will enable discussion about the adequate tick sizes markets should adopt.

One future study is to investigate the effects of high-frequency traders whose investment strategies including market maker strategies and arbitrage strategy because they might play important roles for competition between markets in terms of market share of trading volume. Another future study is to discuss other methods with which agents allocate orders to markets because, for exam-
ple, investors may allocate orders to a market in which the order book has a shorter queue. The order allocation method in this study might be too simple for discussing actual markets.

Disclaimer

It should be noted that the opinions contained herein are solely those of the authors and do not necessarily reflect those of SPARX Asset Management Co., Ltd. and Tokyo Stock Exchange, Inc.

References